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Chapter 1

Introduction

1.1 Background and Motivation

Current approaches to robust control take for granted the availability of uncertainty descriptions,
e.g., parameters lying in fixed intervals (e.g., Barmish[5}, Biernacki et al.[9]) or frequency domain
(Hoo) bounds (e.g., Safonov et al.[60], Doyle et al.[16], Francis and Zames[22]). However, the
question remains as to how these descriptions might be obtained in practice. On the other hand,
the identification community has emphasized estimation of nominal models without developing an
associated estimate of model quality. When model error evaluation has been carried out, this usually
accounted only for random effects due to exogenous inputs rather than errors due to inherent model
limitations which necessitate a robust control design, e.g., Jenkins and Watts[31], Ljung[49] and
the references therein. There is now a greater recognition by both communities of the requirements
of the other. This recognition is evidenced by the strong interest shown by researchers from both
the identification and robust control communities, e.g., the recent Special Issue [35], and the many
sessions on this topic at recent conferences and workshops.

Despite this research activity, this subject is still in its infancy and many developments are likely
to arise from intensive research efforts devoted to the interaction between the previously separate
fields of identification and robust control. To fill the needs of robust control design will require a
new approach to system identification which provides both a nominal model and a measure of its
uncertainty. We refer to this approach as “set-membership identification” or “set estimation.”

The long-range goal of this research is to form a new system identification paradigm that
fulfils all the requirements of robust control design. This will have a significant impact in the
engineering community where such an “engineering theory” is badly needed. Moreover, with the
wide availability and use of CACSD packages, such as MATRIXx research results will be rapidly
spread. Since system identification and robust control design are ubiquitous engineering activities,
the benefits of this research will be widely utilized, particularly among control engineers involved
with aircraft, spacecraft, robotics, and industrial automation.

This report documents our research efforts which concentrated almost exclusively on set-estimation.

Some effort was spent on the important next step of robust controller design using the estimated
model accuracy.

In the remainder of this chapter we provide an overview of the issues and a brief summary of
our results.




1.2 Model Accuracy Estimation

As expounded by Ljung[49], identification consists of three essential ingredients, namely, (i) mea-
sured data, (ii) a candidate model set, and (iii) a criteria for selecting a candidate model using the
data. Moreover, all three should be selected based on the intended use of the identified model. The
problem is the model set which traditionally consists of a single parametric model. There is no
associated parametrization in the model set of a measure of uncertainty. Thus, the designer must
guess or have faith in the identified model when used for controller design. But this opposes all the
standing assumptions made in current robust control design mcthods. These methods require a set
of models, not a single model. For example, a model set can consist of a transfer function which
depends in a known way on uncertain parameters, or the set may be described as a nominal model
together with a frequency dependent “ball of uncertainty”.

The integration of control design and identification is not altogether a new issue. The most
familiar and appealing application is adaptive control where, as shown in figure 1.1, a model is
identified concurrently with the on-line optimization of the control law based on the model. This
leads to intricate nonlinear recursions which have not been fully understood to date. There are
global stabilization schemes which are not robust; there are local stability results applicable to the
steady-state, and hardly anything is known about the transient behavior of adaptive systems, e.g.,
Astréom and Wittenmark(4], Anderson et al.[2].

A formulation where explicit control action is anticipated for the purpose of identification is
the so called “dual control” design, e.g., Feldbaum{19], Barshalom and Tse[6]. Due to the high
computational requirements associated with this method, implementation is only possible with
crude approximations which lead to similar problems as with the adaptive case.

The approach we have been pursuing, illustrated in figure 1.2, is a two step procedure, where
identification produces a nominal mode! along with an uncertainty profile. The control is then
designed to be robust with respect to the estimated model set. This results in an iterative solu-
tion where models and control are adapted to the changing experimental conditions. This differs
considerably from the classical adaptive control scheme (figure 1.1) where the estimator produces
a single model with no information about model accuracy. In the robust control design procedure

of the new approach (figure 1.2), the plant model is replaced by a modcl set which reflects the
accuracy with which the model has been estimated.

In the work described here, we formulate a model set and an identification criterion from which
set-membership identification that uses time-domain data and meets the requirements of robust
control design, naturally follows. Specifically, we have investigated the following topics:

1. high order least-squares set-estimation with ARX model sets.
2. robust control with uncertain ARX model sets.
3. ellipsoid sets with known nonparametric uncertainty.

4. robust control of ellipsoid sets.

[\, ]

. Lo, identification.

Before we discuss the results of our efforts, there are some other relevant issues to clarify. Specifi-
cally, the character of uncertainty, computation, and MIMO systems.
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Figure 1.1: Traditional adaptive control system with parameter estimator.

1.3 On the Character of Uncertainty

The current debate amongst researchers involved with set-membership identification centers on the
nature of the set itself: is it probabilistic or deterministic/worst-case. Clearly both can be used to
quantify uncertainty in either disturbances and transfer functions. A probabilistic, or stochastic,
description of a disturbance is common practice and forms the basis for H,-filtering and control
design, i.e., optimal filtering and LQG control design. A power bounded set of disturbances and/or
a deterministic/worst-case description of transfer function uncertainty leads to M., methods of
control design, e.g., Doyle et al.[15]. These sets can be combined leading to mixed H,/H, control
design, e.g., Khargonnekar and Rotea[33].

If we begin with a stochastic description of the exogenous inputs to a system, then the high-
order least-squares based identification methods described in section 2.2.2 lead naturally to the use
of a probabilistic set to describe the dynamic uncertainty, which is purely parametric. This result
immediately raises the question: what does a robust control mean in the context of probabilities?
We tend to think of a robust controller as providing an absolute guaranty against instability and/or
certain levels of performance degradation given a deterministic, or “hard ” bound on plant uncer-
tainty. With a probabilistic description, or “soft” bound, we must decide if 99.99% is safe enough.
To turn the question the other way, the deterministic bounds necessitates guarding against the
worst-case. But conditions for the worst-case may be extreme, thereby leading to an overly con-
servative controller. But this brings us back to exactly the question of probabilities and outcomes,
and finally to a more fundamental question: is Nature neutra' or conspiratorial?

Attempting an answer at this time may not be necessary, nor very fruitful. Our philosophy has
been more pragmatic. We will leave it be, and follow the consequences of different assumptions
by developing a theory of set-membership identification and corresponding (as necessary) “robust”
control design methods compatible with both probabilistic and deterministic plant sets. In this
way we can explore without prejudice.
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Figure 1.2: Adaptive control with set estimator.

1.4 Computing the Estimate

The computational issue is very relevant to system identification. The great appeal of “least-
squares,” and the principle reasons for its ubiquity, are because a unique minimum is always
obtained, and there are very efficient and reliable methods for computing the solution. The com-
putational methods typically involve square-root algorithms such as the QR transformation, SVD
algorithms, as well as lattice forms for very high model orders. It is imperative that the calcula-
tions are done in this manner, for otherwise significant numerical errors will accrue, even for a small
number of parameters. There are other reasons as well for using a QR method, e.g., (1) high model
orders and large amounts of data are easily handled, (2) data from different experiments are readily
combined without re-doing the entire estimation, and (3) prediction errors can be computed for
varying model orders directly from the QR transformation. These factors make it possible to easily
and rapidly generate extremely high order models from large amounts of data. A least squares

approach to set estimation will naturally benefit from all the existing computational theory and
software.

1.5 MIMO Extensions

All the methods discussed have their MIMO extensions. The arguments made for using high-order
ARX models of SISO systems apply equally well to MIMO systems. Similarly, the Toeplitz based
methods are also extensible to MIMO systems. So, in principal the methodologies should carry
forward. Ilowever, issues of parametrization can become very important because with too many
inputs and outputs, the number crunching can get out of hand. Unfortunately, extending the
parametric robustness tests to the multivariable case is not solved.

]




1.6 Brief Summary and Relation to Other Approaches

It is fair to say that many of the ideas discussed here for set-estimation have been influenced by
the efforts of other researchers as well as by our own previous success and failures. In what follows
we give a brief summary of some of the recent literature.

1.6.1 Ellipsoid Parameter Bounds

In our previous work on set-membership identification, we showed how to obtain a set of models
that are consisteut with a given set of data and a given set of prior assumptions on the possible
nonparametric uncertainty and disturbances see section 2.3 for a brief discussion; more details are in
Kosut et al.[36, 39, 47, 40] and the papers in the Appendix). In these papers the model parameters
are shown to lie in a set defined by a quadratic form, i.e., an ellipsoid or hyperboloid, depending on
the data A similar approach was used in Younce and Rohrs{70}, Wahlberg and Ljung{65]. Earlier
versions of this approach based on least-squares are in Kosut[40] and the related robust control of
ellipsoid bounded plants in Lau et al.[45, 46, 44]. In Wahlberg(65], Laguerre expansions were used
to model the dominant system dynamics and ellipsoid bounds also obtained.

The difliculty with the above approaches is that in order to compute the ellipsoid bound. a hard
bound on the non-parametric dynamics is required, which unfortunately, is precisely the knowledge
which may be difficult to obtain. Another important point is that these methods are based on
sufficient conditions to satisfy the prior H., bound, hence, the sets can be conservative. In the

recent work of Poola et al.[57], both necessary and sufficient conditions are established, but these
are used for model validation.

1.6.2 Stochastic Embedding

In Goodwin et al.[25, 26, 24] a stochastic embedding philosophy is adopted (see section 2.3.3 for
a brief description). It is assumed that both the unmodelled dynamics and noise are drawn from
a probabilistic set having certain amplitude and smoothness properties. Tlese properties are then
estimated by maximum likelihood techniques resulting in what we have called here, a probabilistic
set-mermbership estimator. These ideas have motivated our method of using high-order least-squares

to estimate the set. ‘The use of high-order least squares as discussed here is also discussed in Kosut
and Anderson[37].

1.6.3 Modzl Order Reduction

The use of Laguerre expansions, as mentioned above, may prove very useful in our high-order

least-squares approach, because the orders can be significantly reduced prior tn LS estimation, e.g.,
Wahlberg[66, 67].

1.6.4 Tterative Identification and Control Design

Scveral approaches have been put forward which involve iterating on closed-loop data while succes-
sively adjusting data filters for identification and redesigning the controller. e.g., Schrama{59],Lee




et al.[48], Zang et al.[71], Hansen et al.[29], Yam et al.[69], Kosut{41]. The techniques discussed
here for set-membership identification are a necessary part of these schemes.

1.6.5 M, Identification

Several researcliers have considered the problem of identification using the H,, norm starting from
bounded error frequency response data at a finite set of frequencies, e.g., Parker and Bitmead[56],
Gu and Khargonnekar[32], Helmicki et al[30]. Both linear and nonlinear algorithms have been
developed and bounds on the worst-case identification error are also derived. Although there are
some very interesting results contained in this work, we would rather start from time-domain data,
which really is the source of frequency domain data in the first place. The necw methods of L,
identification described in 2.4 and Massoumnia and Kosut[51] (see Appendix) may prove to be a
more direct approach to this problem.

1.6.6 Set-Membership Validation

A related problem to set-membership identification is that of model set validation. In Smith and
Doyle[63, 62], the following model validation question is posed: “Given experimental data and a
model with both additive noise and norm bounded perturbations, is it possible that the model could
produce the observed input-output data?” This question is a first step towards the reconciliation
of prior assumptions on disturbance and model accuracy with observed data from a system. The
approach is based on frequency domain data with a p-like model strvcture.

In Poola et al.[57], the model validation problem is posed using time-domain data and both
necessary and sufficient conditions are obtained for model validation, and hence, invalidation. Our
previous work on set-membership identification used only the sufficient conditions to produce the
ellipsoidal sets. The underlying theory in Poola et al.{57], which provides both the necessary and
sufficient conditions for consistency, is based on certain Toeplitz forms. There are so.ne similarities
with the Toeplitz forms used the new L, identification methods uiscussed in section 2.4.
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Chapter 2

Set-Membership Identification

In this section ./e give an overview of the fundamental problem of set estimation and a detailed
summary of our own contributions. The complete details of our work is contained in several papers
which are included in this report as an Append.x.

2.1 Problem Formulation

To illustrate the issues, suppose that the true, but unknown system to be controlled is the single-
input-single-output stable discrete-time system,

S:{y=Gu+ He | e€ E(A\)} (2.1)

where G and H are unknown causal linear-time-invariant (L'1I) systems .-ith transfer functions
G(z) and H(z), respectively. The sequences y and u are, respectively, the sensed output, and the
applied control input. The sequence e is unpredictable except known to be in a set E(A) where X
is unknown. Likely candidates for E(A) are Epo,(A), the set of sequences with power bound A, or
E;iq(A), iid zero-mean sequences with variance A. For robust control design, it is necessary to have
a set description of the plant system. For example, consider the set!

M:{y=(G+aW)u+ fe ||l <7 e BN}

If E(X) = Epou()), then M is typical for Ho, control design. If E(X) = Eq(}), then mixed Ha/Hoo
control design methods apply. There are many combinations possible. However, in all the above
cases, the quantities with “hats” are available a priori to the designer. The problem addressed

here, referred to as set estimation, is to determine these quantities a posteriori from the finite data
record,

{y,w |t=1,...,N}

where ¥, and u, are the values of the sequences y and u, respectively, at time ¢. In the remainder
of this section, some of the issues involved in set estimation are discussed and some promising
methods recently proposed are reviewed. More details on these specific techniques can be found in
the special issue {35] and the references therein.

' A is stable, JA[l, = sup, [A(e’“ Y, otherwise, {Ajy, =~

-1




2.2 Least-Squares Parameter Estimation

Least-squares (LS) methods of parameter estimation enjoy a very wide usage, and the underlying
theory is well developed, especially in a probabilistic framework. In section 2.2.2 we show that
the LS estimator together with high-order ARX models lead naturally to transfer function uncer-
tainty which is parametric. Moreover, the parameter uncertainty can be either probabilistic or
deterministic, depending on prior assumptions.

Parametric uncertainty has proven much more difficult for robust control design than the non-
parametric dynamic uncertainty associated with H,, methods. However, as discussed here, the
parametric uncertainty set produced by high-order least-squares seems to be quite tractable and
leads to some new approaches to robust control design (section 2.2.3).

The high-order ARX model sets, although compatible with the assumptions in the LS theory,
can be viewed as an intermediate step to encoding the data into a model more suitable for robust
control design. To reduce the model order, we have examined the use of Laguerre expansions
(section 2.2.4) before LS is applied. The seclection of the Laguerre kernels may have to be based on
a priori information, or depend on a desired closed-loop bandwidth.

2.2.1 Statistical Analysis

Parameter estimation via least-squares with an ARX model is perhups the most widely used ap-
proach to system identificution. Consider the parametric ARX model set:

M: {Asy = Bou+e | # € R?, e € E;is(N)} (2.2)
where
n . . m R
Ag = 1+ Za,—z"’, By = Zbiznl
1=x1 t=1
0 = [a1- ap by -bpy)”
Thus,
Y o= ¢ 0+e
4’? = {_yt—-l T Yt Ugmy 'ut—m]

The least-squares parameter estimate, based on a finite data record, is found from:

N
8= arg min i Z(yl — 0T¢¢)2 (2.3)
6 N t=1
It is well known (Ljung{49]) that

80, as N — 00, w.p. 1

where -
0" = arg moin 5 Serr(w, )dw

-




with the “error” spectium given by,

Serr(w,0) = | Ag()G(e™) -+ Bo(?)* S u(w0)
+ Aldg(e)H (@)

In addition, if the system (2.1) is in the ARX model set (2.2), then the parameter error § — 67 is
asymptotically normally distributed, i.e., as N — oo,

VNG - 8°) — N0, E(:8]) 1) (2.4)

where £(-) denotes expectation. Observe that the system (2.1) is in the ARX model set if there
exists a parameter 8y such that, G = By, /Ag, and H = 1/A4,,. Although this is not true in general,
the true system can be arbitrarily well approximated by a high order ARX model. Specifically,
set n = m. Then, there is a sufficiently large value of n and a corresponding parameter 8, € R?"
such that [|[H ~1G — By, 3, and |[H~! — Ag, "Hw are arbitrarily small. Hence, {or some sufficiently
large values of N and n, reasonable estimates of £(¢:¢7) and }, are

R—_—“‘ ¢t¢t /\= Et
Nt:l N°2nt=1

with
e = W — ¢zT0

the estimated prediction error. The above asymptotic approximations inspire several types of
high-order ARX set estimators.

2.2.2 High-Order ARX Sets

Let G = B/A and # = 1/ A denote LS/ARX estimates of G and If. Let m = n where n is large.
Then, the true system is well approximated by,

Ay = Bu—§TR™ V2% 4 ¢ (2.5)
where § € IR?™ is the normalized (unknown) parameter error:
§ = RV*(§ - 0) (2.6)

Since e € E;;4(A), for large N, we have the following approximate statistical properties:

A X
be N(O,‘ﬁfgn), (N - 2n); € X}(N - 2n)

Therefore,
N T

b
i € x*(p), 2":\ € F(2n,N - 2n)

A

where F(2n, N — 2n) is the F-distribution with degrees of freedom 2n and N — 2n. Hence,
2% ~
Prob{678 < Trak} =1

can be determined from an F-distribution table. To be safe, suppose we set 5 very high, say,
7 = .999. Then for typical numbers such as N > 1000 and n = 10, we get a = 2.27. For large n,

9



say n = 60, and large N > n, we get a = 1.45, and so on. In addition, for large N, ¢ € E(}).
Hence, for large n and large N, the system (2.1) is in the model set

.:{y =Bu—8TR V% 1
Mg,z :§ 676 < al (2.7)
e € Eija(A)

with probability of at least 7.

It is interesting to compare the above probabilistic result with a strictly deterministic view. For
example, the orthogonality properties of the least-squares estimator give:

N
§T6 =3 el - (N - 2n)A

t=1

This property requires no probabilistic assumptions on the data. Hence,
1 ¥ 5 <
-N—Zef <n=6T6 < N(n-2X)+2nA
t=1
The estimate A is a possible choice for n which gives a result very similar to that above.

2.2.3 Robust Control with ARX Sets

In this section we discuss the issue of robust control design under the assumption that the true
system is in the ARX model set Mg, of (2.7). Suppose we apply the LTI feedback controller

u=-Ky (2.8)
where K stabilizes the “nominal” ARX system (6 =0), '
/’iy =Bu+e

Applying the control to the actual system model (2.5), gives the closed-loop system

yi_ Tee | _ 1 [ Te
ul | —Qse | 1-6Th| —Qe

where
Fo= — 1,\,\, (’2\:,\1,\,\
A+ BK A+ BK
~ z7!
-~ ~ DT
h R™1/? ~ 1, D=
D@ -
z

Because K stabilizes the nominal system, T, § and h are all stable.

Recall from the Nyquist theorem that since h is stable, the closed-loop system is stable if and
only if], o '
11 = 8Th(e™)] # 0,V676 < p* Vw

10




This is equivalent to
P < Psiab

where pgab, the so-called “real” stability margin is given by,
Plia, = inf int {6T6 = r{(w) | §Th(e™) = -1}

Calculating 7(w) involves finding the minimum norm (least-squares) solution to the over-determined
set of equations §Th(e’*) = 1 at each frequency. Thus,

rw) = { Yllall” = (aTo)/ %], b # 0
1/ {la)?, b=0

where _ .
a = Re h(e’), b=1Im h(e’¥)

Hence, a “probability of stability” can be stated as follows. If
Prob{676 < p*} =g

then
p < Petab = Prob{(1 — 6Th)™! stable} > n

It ought to be mentioned that no closed form solution is known for the stability margin, pgap, in
the MIMO case.

2.2.4 Order Reduction via Laguerre Expansions

Although high-order ARX model set estimation seems promising, there are some obvious impedi-
ments. First, the controller (2.8) will also be of high order. Secondly, a determination of what is
meant precisely by high order is dependent on a priori knowledge about the true system. Thirdly,

the statistical properties are based on very large data lengths, and again, a precise value depends
on the true system properties.

To offset the high order, an alternative is to use a more parsimonious model parametrization.
For example, using Laguerre expansions, as proposed in Wahlberg and Ljung[65], may result in
considerably fewer parameters to obtain the same level of approximation as a model expanded
in the backward shift operator z~!. However, the efficacy of this approach depends on prior
information regarding the accuracy of some dominant pole locations. The basis for the Laguerre
expansions is the fact that for any stable transfer function T(z), and any a € (—1,1), there is a
unique bounded real sequence a, such that

T(z) = i Oszk(z, a)
k=1

where

Li(z,a) =

m(l—a2>""

z—a Z—4a

Observe that for a = 0, Lx(2,0) = z7*, which returns the usual expansion in the delay z71. The
appropriate order of the expansion depends on the convergence properties of the partial sums. For
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example, z—_l_; has a Laguerre expansion of order n = 1, provided that a = p. Since typically, p
is not known, a good choice of n will depend on prior knowledge of p. For ARX models, replace
H~' and H7!G in the shift operator with Laguerre expansions. To pick a good Laguerre kernel
requires either prior knowledge or else some data dependent means of selection. Another possibility
is to select the kernel to reflect the desired closed-loop bandwidth.

An affine model set, e.g., a Laguerre expansion for GG, can also offset the issue of determining
what is meant by a large data length. With this model, it is possible to precisely compute statistical
properties without the need for either large model orders or large data lengths, e.g., Kosut and
Anderson[34]. However, another useful asymptotic property, also true for ARX models, is that if
the input is white, then the first m impulse response coefficients of G are asymptotically unbiased,
where m is the order of By. Other useful results follow from this fact, e.g., Aling and Kosut [1].

2.3 Ellipsoid Set-Membership Identification

2.3.1 Uncertain Non-parametric Dynamics

When an upper bound on the nonparametric model errors is known from prior knowledge, it is
possible to compute a parameter set which is consistent with the data. Depending on the data, the
parameter set is either an ellipsoid or an hyperboloid. In the latter case the data is considered to be
“bad”, that is, the spectral content of the data is concentrated too heavily at those frequencies where
the nonparametric dynamics dominate. Thus, an ellipsoid indicates “good” data and there are
several schemes for minimizing the size of these ellipsoids. Computation of the bounding ellipsoids
is virtually no different than standard least-squares computations and can be accomplished in a
batch or recursively. We plan to investigate efficient methods in our future work. Various kinds
of prior information can also be included using the bounding ellipsoid approach. Some of these

computational problems are generic, not specifically for robust control and identification, and are
surveyed by Deller[14].

To see the main result more clearly, we can state the problem as follows: Use the measured
input/output data

{yt,utlt:I,...,N} (2.9)

to obtain a model set suitable for robust control design. To do this we need to make some as-

sumptions. The first is that the system which produces the data is disturbance-free and linear time
invariant. Thus,

Y= Gu (210)

where G has the (discrete-time) transfer function G(z). Assume also that the true system is a
member of the model set

g = { Gﬂ(l + AG"VG) 1 6 € @prion”AG”Hm S 1 } (211)

Thus, the model set consists of parametrized models with a multiplicative nonparametric error
bounded by Wg(z). The set O, represents the prior information by which the parameter vector
is confined. We further characterize the parametric transfer function by using the standard ARX
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form in Ljung[49]:
Go(z) = Bo(z)/Ae(2)
Bp(z) = biz7' 4 ...+ ba2"
Ag(2) 1+aq1z7 4+ ...+ a2z
0 = (aj ... anby ... b )7

(2.12)

i

The result in Kosut et al.[39] which forms the basis for the parameter set-membership estimation,
is the following

Theorem 2.3.1 Under the assumptions stated above, all parameters which are consistent with the
measured date and the prior information are in the set

Gpr'ior n Owc
where the “worst case equation error set” O, is defined by

Ouc ={ 8 €R? : ||Agy — Boully < [|BsWsully }

Ulzlin = (TN, 2Tz,)}/? is the usual &2-norm on ¢ € [1, N].) The motivation for the term “worst
case” refers to the fact that the nonparametric uncertainty Ag will take on the worst possible value
such that ||Ag|l#, < 1. The set can be easily computed using least-squares methods and may be
a hyperboloid, ellipsoid or the empty set depending on the data (see Kosut et al.{39]). Thus, the
true system is guaranteed to be in the set:

G = { Go(1+ AcWg) : 8 € Oprior N Ouc, 161N, <1} (2.13)
Instead of multiplicative model errors, we have also conéidered additive model error sets, i.e.,

G ={Go+AcWs : 0€Oprion, |AcIHn, < 1) (2.14)
The resultant parameter set is then given by

Oue = { 0 €RP : ||Agy — Boully < |A6Waully }

Several other model error formulations can be used, e.g., inverse multiplicative, feedback and
coprime factored. We will not discuss them here, but merely state them to indicate that this is a
versatile approach which allows various kinds of prior information. More specific details and results

using the set-membership approach are described in Kosut et al.[36], a copy of which is contained
in this report as an Appendix.

2.3.2 Robust Control Design of Ellipsoid Sets

As a first step in using the ellipsoidal parameter set information, we simplified the robust control
design problem to the case of FIR plants in an ellipsoidal set. Details can be found in Lau et
al.[45, 46] which describe the continuous-time and discrete-time cases, respectively. Copies of these
papers are contained in the Appendix.
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We started with the simplifying assumption that the plant state-space description depended on
uncertain parameters in the output matrix which are only known to lie in an ellipsoidal set. The
desired control is chosen to minimize the maximum linear quadratic regulator (LQR) cost from all
plants with parameters in the given set. Although no a prior form is assumed for the minimax
control, it turns out that it is the LQR control for one of the plants in the set, the worst-case
plunt. By defining an appropriate operator mapping an element from the given ellipsoidal set to
an element of the same set, the existence of this worst-case plant is proved. A simple algorithm is
used to compute the worst-case plant.

The assumption that the output matrix in the plant description contains all the uncertainty
deserves further discussion. First, this is a natural extension of the discrete FIR finite-horizon
problem solved in Lau et al.[46]. In the continuous case, Laguerre models can be used so that the
identification is reduced to estimating the Laguerre coefficients (see Wahlberg[64]). Uncertainty in
the Laguerre coefficients can then be described by set membership of the output matrix. Second,
by limiting uncertain parameters to the output matrix, we simplify the analysis and can gain more
insights than if we had included parameter uncertainty in the plant dynamics also.

Specifically, we consider the following family of systems

£(t) = Az(t)+bu(t), z(0)=zo (2.15)
y(t) = Tz(b), (2.16)
where A, b, and z¢ are fixed and given, and
ce0={0:(0-0)TREO-6.)<1, R=R">0}. (2.17)
For a given control u: My — M and a fixed ¢ € ©, the LQR cost is defired to be
J(u, ) = /0 Zlru()? + y(8)?] dt. (2.18)

We assume that (A, b) is controllable (or at least stabilizable) and (¢, A) is observable (or at least
detectable) for all ¢ in ©. The robust control design problem is to find a control u that solves the
following minimax problem:

min max J(u,c). 2.1
in max J(u, ) (2.19)
Since no a prior form is assumed for the control u, such as linear state-feedback, the minimization

in (2.19) is over all possible v : IRy — IR. Note also that we chose the initial time ¢ = 0 for

convenience only, the problem can be posed at any initial time t = t5. Therefore, one can design a
new controller each time © gets updated.

The cost objective in (2.18) and the ellipsoidal set in (2.17) lead to another interesting inter-
pretation for the minimax problem in (2.19) once we rewrite (2.18) as

J(uyc) = /0 “ru(t)? + 2T ()ec 2(1)] dt. (2.20)

Now, instead of saying that we are designing a controller for a set of plants described by (2.15)
through (2.17), we can also say that we are designing a controller for a set of objective functions.
This interpretation contrasts with the standard LQR design where one controller is obtained for
the selected weighting matrices. Therefore, the minimax control from (2.19) is less sensitive to
how the states are penalized in the cost. This kind of control design method should be applicable

to many practical situations as we seldom know exactly how much one state should be weighted
against another.




2.3.3 Comparison with Stochastic Embedding

In the work of Goodwin et al.[24, 25, 26] a stochastic embedding philosophy is adopted which makes
no assumptions on model order or data length. It is assumed that both the unmodelled dynamics
and noise are drawn from a probabilistic set having certain amplitude and smoothness properties.
These properties are then estimated by maximum likelihood techniques resulting in a set estimator.

Since all the trouble is related to that part of the system which is not modeled, t.e., the “bias,” it
makes no sense to try to estimate the bias in the form of a parametrized model. That is tantamount
to an additive high order plant model component which should have been incorporated in the plant
model in the first place, e.g., high-order ARX model sets.

To see the main idea, assume that the true system is described by (2.1), and an estimate G of
@ has been obtained from

N
~ 1 )
0= argmin — ‘§=1(y — Gou);

Since the model structure is incompatible with the true system, G will be a biased estimate of G.
We now make the assumption that the true system is the sum of a model in the model set and a
bias term which has an ezpectation value of zero:

G(z) = Ggy(2) + A(2) with £ {A(2)} =0

Here, the expectation is not taken over the data probability space, but over the unknown bias model
set. In other words, the complicated problem of relating the bias to the data and the mismatch
in structure of the true system and the model is avoided by simply assuming that the bias model
is a zero-mean random variable. By modeling the bias in this rudimentary form, a bias model set
parametrization is obtained which is described by a small number of parameters, yet is capable of
representing a large set of error models.

As an example, assume that the expectation of the squared bias model impulse response is
exponentially decaying:

A(z)=) A=, E(nl} = ap'
t=1

where 0 < p < 1. Thus, the bias model set is described by only two parameters a and p. With
some additional assumptions, e.g., gaussianity and Gy an affine Laguerre expansion, an explicit
formula of the Fisher information matrix can be derived which forms the basis for an optimization
procedure. llence, the two parameters which describe the general shape and size of the less certain
part of the system model can be directly estimated from the data.

2.4 L. Identification

In this section, a new criterion for system identification is introduced, which we loosely call £.-
identification. At the present timne, very little is known about this approach, and hence, we can
only guess about the consequences for set-membership identification and the corresponding robust
controller design. However, like LS, this approach also leads to solving a convex optimization prob-
lem. Unlike LS, it does not appear at this time that the solution can be expressed in closed-form.
However, the criterion is a convex function, so therefore, numerical methods will reliably compute
the solution, specifically, interior point methods. In the future we hope to further understand
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the properties of this estimator and develop reliable computational methods. Hopefully, this new
methodology will result in more natural set estimators suitable for robust control design.

The parametric approach to system identification is based on selecting an appropriate model
structure and a search for the parameters of the model that best describes the data. Usually, the
best model within the model set is characterized as the one that minimizes a selected norm of the
prediction errors, usually the 2-norm. In this section a new norm is introduced. Minimizing this
norm is equivalent, asymptotically, to minimizing the supremum of the spectrum of the prediction
error over all frequencies, or equivalently minimizing its Lo, norm.

Given a scalar finite sequence {e;, 1 = 1,..., N} which represents the prediction errors computed
from the observed data and a guessed model parameter vector §. Based on this sequence, form the
(N + M - 1) x M matrix,

{ €1 0 e 0 \
e, €1 e 0
1 eM em_y - €1
Enm = _\/_ﬁ— : : . (2.21)
EN EN-1 ' EN-M+1
0 env - eN-M42
\ 0 0 ‘e enN )

with 1 < M < N. Note that Enas is constant along the diagonals, and for M = 1, En; is a
column vector with e;/v/ N as its elements. Denote this vector by En. Hence, the matrix Enpg is
completely specified when En(= Ep) is given.

Define the new norm as the maximum eigenvalue of .E%} mMENM,
Var(En) = X (EfmEnm) =5 (Enm) (2:22)
where A(F) denotes the maximum eigenvalue of F and &(F) denotes the maximum singular value

of F. Note that for M = 1, Vy( En) is the usual quadratic norm. ;From Grenander and Szego[28],
we obtain the following limiting properties:

. 1 /7
13'.1“005’{’1"7” = 5;/r See(w)dw (2.23)
. . -2 ~ - P
A}BLO(A}L[.“&U (Enm)) = Ii}lgpn See(w) (2.24)
. . 24 g _ . -
Jim (Jim o*(Enm)) = |‘.',ng" See(w) (2.25)

where we assume that N goes to infinity faster than M.

Relation (2.24) is very illuminating and shows that by minimizing Vas as M approaches infinity,
the supremum of the spectrum of the prediction error over all frequencies is minimized. Because of
this property, we referred to the identification problem using the new norm as the £, identification
problem. In contrast, by minimizing the usual quadratic norm, the integral of the spectrum of
prediction error over all frequencies is minimized (see Ljung[49]), and this can be referred to as
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L identification problem. It seems plausible, that this norm is potentially very useful for robust
control design. More details can be found in Massoumnia and Kosut{51] which is included in the

l Appendix.
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Chapter 3

The Future: A Graphical User
Interface for System Identification

A long range objective of the present work is the development of some mathematical and compu-
tational tools that are appropriate to the next generation of CACSD (Computer Aided Control
System Design) environments. These future CACSD packages will be radically different from the

present packages in that they will truly be able to perform control systems synthesis and rapid
prototyping, rather than just analysis and simulation.

In our view of the future, the engineer will commence the design with uncertain and/or in-
complete information consisting partly of prior knowledge, measured data, and a set of closed-loop
design objectives and constraints. Once this information is fed into the CACSD program, it will in
turn generate controllers that meet the performance requirements while respecting the constraints,
or else inform the engineer that the constraints cannot all be satisfied, suggest some trade-offs
as well as alternative experiments to obtain data which -may reduce uncertainty. As the engineer
thinks of more constraints and requirements, and/or obtains more data, these are entered into the
computer and are accounted for as they are entered. Thus, the CACSD process is still interactive,
but the level of interaction with the computer is much higher than it is at present. Moreover, the
interactive use of real data would be much more possible than at present.

In order for this ideal situation to come about, it is necessary first to solve some important math-
ematical and computational problems residing in the interface between controller implementation
on the actual system and controller design based on a model of the system.

System identification is a typical example of an iterative inter-active orocedure where several
results have to be computed, analyzed and re-iterated again with modified design parameters. In
order to do this, the user repeatedly has to enter a sequence of commands for computing frequency
responses, spectral density functions and prediction error norms. Even in high-level interactive
CACSD programs like MATRIXx and MATLAB it is virtually impossible to execute this procedure
without having to write command files for each specific task. Figure 3.1 shows typical paths and
functions in the MATRIXx system identification environment. Instead of concentrating on the
design task, the user is mainly occupied with designing, organizing and maintaining a large number
of specific programs for standard procedures. As a conclusion, the current CACSD software is
inadequate for most users, both in the sense of user-friendliness and software design capabilities.

As an example, at Integrated Systems Inc. (IS1), we have recently introduced the XMATH
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Figure 3.1: MATRIXx System Identification command overview

product, which provides an ideal platform for the development of portable window-based CACSD
software such as system identification and control design. The important difference with the current
interactive CACSD programs in terms of user interface is that XM ATH incorporates an interactive
X-windows based GUI development tool. This makes it possible to efficiently design interactive
mouse-driven application software where the interaction takes place through one or more specially
suited windows for each of these tasks. Such windows display all relevant parameters, as well as
graphical output like frequency response plots and bar graphs of error norms as a function of model
order. Standard validation and identification options are activated by a pulldown menu with on-line
help, and all displayed parameters are open to be changed for quick recomputation of the results.

As an example, consider the window displayed in Figure 3.2 which was written in XMATH/GUI
and which is intended for interactive system identification. This tool allows the user to iduatify all
ARX models up to a certain order, view their frequency response and confidence intervals, and vary
the data window (gray area in the data plot area) and model order (gray bar in the two upper right
error norm plots) using the mouse only. In the lower left area, all important model parameters are

displayed and various options can be accessed by activating a pulldown menu from the top menu
bar.

Clearly the XMATIH-GUI can be used for the development of an interactive object oriented
environment which is sensible for a wide variety of users in the field of system identification and
control system design. This not only relieves the user of the burden of comman< .y utaa-s, but also
makes the design procedure completely self-explanatory.




Crrar OB of. Khets $RCA D Ol |

Figure 3.2: An example XMATH/GUI window
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On the Character of Uncertainty for System
Identification and Robust Control Design *

Robert L. Kosu’c]L

September 15, 1992

“It ain’t the things you don’t know what gets you in deep trouble. It’s the things
you know for sure, but what ain’t so.” -Uncle Remus.

Nothing could more aptly describe the predicament when faced with the problem of
designing a controller from accumulated sensed input-output data. The identification, or
estimation, of a system’s transfer function from input-output data has a long history and
there are many excellent survey articles and textbooks that can be referenced, e.g., [4], [8],
[7],[15], [14]. The problem with all the methods discussed in these references, insofar as robust
control design is concerned, is that model error estimates are usually not available, and if
available, cannot be trusted. The principal reason for-this difficulty is that the identification
algorithms are developed under the false assumption that the true system is in the model
set. As a result, the model estimate, loosely speaking, is “biased”, and hence, a controller
designed using the estimate may result in unacceptable closed-loop behavior, a phenomenon
which is well documented, e.g., [14, 3, 1]. To paraphrase the above aphorism, “Trouble is
bound to follow if the identified model is known for sure to be the true system.”

This situation is unfortunate, because all the standing assumptions made in current
robust control design methods require a model set description which typically consists of
a nominal model and an error estimate, usually a norm bound, where both together are
guaranteed to encompass the true system. To fulfill the needs of robust control design will
therefore require a new approach to system identification which provides both a nominal
model and a measure of its uncertainty. Such schemes have been referred to by various
names, e.g., set-membership identification, set-estimation, uncertainty modeling, as well as
other self-canceling phrases -- how does one model an uncertainty? This research topic has
received strong interest recently as evidenced by this workshop, the recent special issue [10],
and the many conference sessions planned at the next ACC and CDC.

*An essay for the NSF/AFOSR sponsered Workshop on “The Modeling of Uncertainty in Control Sys-
tems,” University of California, Santa Barbara, June 18-20, 1992,

¥ Integrated Systems, Inc., 3260 Jay St., Santa Clara, CA, 95054 and Department of Electrical Engineering,
Stanford University, Stanford, CA.
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Formulating the Problem

“If what is said is not meant, then what ought to be done, remains undone.”
- Confucious.

Sometimes solving a problem means finding a simple or direct statement of the problem
in the first place. In attempting to distill the problem formulation to its essence, perhaps it is
this: given a finite collection of sensed sampled input/output data from an unknown system,
what level of confidence can be assigned to a feedback controller design or modification? If,
other than the measured data, there is no additional knowledge about the system, then the
problem is solved: there is no safe controller. Anything can happen, because there is no
means for inferring the future from the past. Therefore, to make the problem meaningful,
it is necessary to make a priori assumptions about the system. These assumptions can
be either qualitative or quantitative. For example, assuming that the unknown system is
linear-time-invariant is qualitative a priori knowledge. Knowing that it is stable can still
be classified as qualitative, but assigning a region for nole locations or knowing a bound on
the impulse response is quantitative. A similar clasaification can be made regarding signal
charateristics. Knowing that a signal is white is qualitative; but knowing a precise value for
the variance is quantitative.

Although a priori quantitative information may be readily available, e.g., from the un-
derlying physics, I think that it is first necessary to resolve the more pristine problem of

specifying a minimal amount of qualitative ¢ priori data so as to assign a high degree of
confidence to a controller design.

Is Nature Good, Evil, or Indifferent?

The phrase “high degree of confidence” needs clarification. Do we mean worst-case or
high probability?

Current robust control formats are based on worst-case scenarios. Nature is perceived as
Evil, and hence, does the wrong thing, from our perspective. However, if this is not the case,
and Nature is at worst Indifferent or Neutral, then the problem should be posed in reverse: to
fulfill the needs of system identification, long resting on a probabilistic (neutral) foundation,
may require a new approach to robust control which allows for a probabilistic description
of uncertainty! This latter possibility invokes the current debate on the intrinsic nature or
character of the uncertainty set. Is it probabilistic or worst-case deterministic? Clearly both
can be used to quantify uncertainty in either disturbances and transfer functions. However,
searching for the worst-case may be a hopeless task. If the worst-case has not yet occurred,
it might in the future, and hence, the search never ends. Fitting a probablistic model is

more sensible in this regard, but a 99.99% confidence level does not preclude the remaing
.01% from occurring.

A probabilistic, or stochastic, description of a disturbance is common practice and forms
the basis for H,-filtering and control design, i.e., optimal filtering and 1.QG control design
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[2]. A power bounded set of disturbarces and/or a worst-case deterministic description of
transfer function uncertainty leads to H., methods of control design, e.g., [5]. These sets
can be combined leading to mixed Hy/H, control design, e.g., [9]. The above examples by
no means exhaust the possible deterministic and probabilistic sets. For example, sequences
can be uncertain but have a bounded spectrum or a bounded magnitude. Transfer functions
can be uncertain but with (time) bounded impulse responses, and so on. The choice of
which uncertainty characterization to use depends upon prior kaowledge about the true
system. Clearly different assumptions ought to lead to set estimators with differing forms
and mixtures of probabilistic and/or worst-case deterministic uncertainty types.

As a case in point, if we begin with a stochastic description of the exogenous inputs
to a system, then the standard least-squares based identification method with a high-order
ARX model structure leads naturally to a purely parametric uncertainty which, depending
on further assumptions, is either probabilistic (normally distributed) or worst-case determin-
istic (ellipsoid bounded), e.g., {12, 11, 6]. To conform to current robust control paradigms,
the parametric characterization of uncertainty must be transformed to a non-parametric
worst-case deterministic frequency domain bound, a transformation that is not without a
considerable loss of information. Dealing directly with the worst-case deterministic (ellipsoid
bounded) parameter uncertainty leads to some new insights into robust control design e.g.,
(13]. For the probabilistic form of parameter uncertainty, it is my view that it would be
better to develop a compatible theory of “probabilistic” robust control.

Going in this direction, however, immediately raises the question: what does a robust
control mean in the context of probabilities? We tend to think of a robust controller as pro-
viding an absolute guaranty against instability and/or certain levels of performance degra-
dation given a deterministic, or “hard ” bound on plant uncertainty. With a probabilistic
description, or “soft” bound, we must decide if 99.99% is safe enough. To turn the ques-
tion the other way, the deterministic bounds necessitates guarding against the worst-case,
which may be extreme, i.e., unlikely, thereby leading to an conservative controller. But this
brings us back to exactly the question of probabilities and outcomes, and finally to a more
fundamental question: is Nature neutral or conspiratorial?

Towards a New Paradigm, or Paradigm Lost

Attempting an answer may not be necessary, nor very fruitful. I think that a better atti-
tude at this point is to follow the consequences, without prejudice, of developing a theory of
set-membership identification and corresponding “robust” control design methods compati-
ble with probabilistic plant set descriptions. This to m~ seems the more sensible engineering
oriented character of uncertainty.

Hopefully, as a result of research efforts in many different directions, new paradigms
will arise which combinc system identification and robust control design. With the wide
availability and use of CACSD packages, the benefits of this research could be widely utilized
in many enginecring fields. Hence, it becomes imperative that the resulting methodologies are
comorehensible and useful for the engincering community at large; not just understandable
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to a few experts. The onus is on us!
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Set-Membership Identification of Systems with
Parametric and Nonparametric Uncertainty

Robert L. Kosut, Fellow, IEEE, Ming K. Lau, Student Member, 1EEE, and
Stephen P. Boyd, Member, IEEE

Abstract— A method is presented for parameter set estimation
where the system model is assumed to contain both parametric
and nonparametric uncertainty. In the disturbance-free case, the
parameler set estimate is guaranteed to contain the parameter
set of the true plant. In the presence of stochastic disturbances,
the parameter set estimate obtained from finite data records is
.hown to have the property that it contains the true-plant
parameter set with probability one as the data length tends to
infinity.

I. INTRODUCTION

N the traditional adaptive control system, the identified

model is used for on-line controller design without any
regard for errors between this model and the true system
which generated the data. The identified model is usually
selected out of a model set with unknown parameters as
depicted in Fig. 1. The controller is designed as if the
parameter estimates were in fact the correct parameters for
describing the plant. This is known as applying the certainty
equivalence principle. In the ideal case, it is assumed that
there exist parameters, which if known, would precisely
account for the measured data. Even in this ideal case, the
transient errors between the identified model and the true
system can be so large as to completely disrupt the perfor-
mance. In the usual (nonidezl) case, the true system is not in
the model set, therefore, both unacceptable transient or
asymptotic behavior can occur, e.g., [1,.

Following the ancient Greek adage,' **Well begun, half
done,”’ one ought to construct, at the outset, an adaptive
control system which specifically accounts for the inevitable
model error, i.e., an adaptive robust control. Depicted in
Fig. 2 is our proposed scheme where the traditional parame-
ter estimator is replaced with an estimator that produces a
model set. Thus, point estimation of a single model is
replaced with set-membership identification. The estimated
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Fig. 2. Adaptive control with set estimator.

model set can contain both parametric and nonparametric
descriptions of uncertainty arrived at from both measured and
prior data.

We also replace the traditional controller design algorithm
with a robust controller design algorithm which accepts the
model set format. By referring to a robust controller we
mean a controller that achieves some specific set of specifica-
tions for any plant model in the model set. The robust
controller design thus takes a set of models as input and
produces a controller that is guaranteed to meet the specifica-
tions for all models in this set. The robust controller design
can also teport the worst-case performance with respect to
the model set. It is also true that if the model set is too large,
or the specifications are too tight, then no robust controller
will exist.

During the transient or learning phase, the estimated model
set could be a poor representation of the true system as it
could be quite large. Howe ver, if the system which generated
the measured data is contained in the estimated set, the robust
controller will be stabilizing, though may be of low author-

K Q2R6/92903 (X)) 199D [EEY

35




L dL U RGSINDAS B IAAND VAN AL TN TG VAU IR N, 8 NG 7 ULy 1992

ity. Conversely, if the model set becomes smaller after some
time, this will be reflected n a tugher authority controller
with more desirable performance characteristics.

It is imporant o point out, and even emphasize, that
althouph this approach is inspired by a separation principle,
it is not optimal. Roughly speaking, set estimation and
robust controller design mmght benefit from being coupled.
For example, the input « might be temporarily manipulated
in such a way so that the sct estumator could rapidly learn and
therefore improve future performance at the expense of cur-
rent performance. In a purely Bayesian framework, notions
of optimality along this line are made precise in [9].

Although not guaranteed to be optimal, the scheme shown
in Fig. 2 is at least less heuristic than the traditional scheme
of Fig. 1. For example, if the set estimator is consistent,
that is, the true plant is in the estimated model set, and
moreover, if we stop adapting at any given point, then we are
guaranteed a worist-case performance as reported by the
robust controller desiga.

In this paper, we address the problem of parameter set
estimation where the system model contains both parametric
and nonparametric uncertainty. In our formulation, we use
the measured data to delineate a parametric set which ac-
counts for a priori knowledge of nonparametric dynamics
and disturbances. Observe that if measured data is not used,
then the identified model set consists of a constant model set
and the ‘‘adaptivc’’ controlier reduces to a single robust
design. We can also recover the traditional adaptive scheme
by replacing the robust design with a heuristic design which
uses a typical model in the set, e.g., the ‘‘center’” or
‘‘average’’ model.

We will not address the robust control design issues as
different methodologies for robust control design, particu-
larly for plants with uncertain nonparametric linear dynam-
ics, can be found in {26], [8], and {12]. Methods for robust
control design of plants with parametric uncertainty are de-
scribed in [2], [S] and the references therein. In the case of
parametric set-membership uncertainty, minimax controllers
are considered in (22} and [21]).

At present, there are several competing and complemen-
tary methodologies for the design of set estimators, e.g.,
(29], [20], [17), [14], [18), and (32]. Related work on the
limitations of identification of linear-time invariant systems
can be found in {13], [15], [24], and [28]. Our work here
follows closely to that described in {311, [32], and [18] for
the disturbance-free case with nonparametric uncertainty, and
in 23] for the disturbance case. The parameter sets devel-
oped here are similar in form o those developed in [10],
{11], {25], and [3] for the case with no nonparametric
uncertainty but with bounded disturbances. The foundation
and impetus for much of the work in parameter set-member-
ship identification can be traced back to [27], and [4] for the
statc-estimation problem.

The paper is organized as follows. After introducing some
notation and standard definitions in the next section, the
problem is formulated in Section {II. Parameter set estimates
for the disturbance-free cquation-crror case are developed in
Section [V, In the presence of stochastic distusbances, equa-
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tion-error parameter set estmate: computable from finie data
records are presented in Section V. Extensions to the output-
error casc and determunistue disturhances are discussed in
Section VI. The paper concludes with some remarks 1n
Scction VII

I NGTation ann Preiavamagies
Transfer Functions: In this paper, we consider sampled-
data systems with transfer functions n the complex variable
Z. If the system 15 denoted by G, then ats transfer function is
denoted by G(z). Typially, G(z) is obtained as the zero-
order hold equivalent of a continuous-time transfer function
P(s). Thus,

G(z) = Z20#{P(s)} (1)

(-2 2|20 @)

where 20#{-} and Z{-} denote the zero-order hold and
the usual z-transform operations, respectively.

A transfer function G(z) is stable if all its poles are
strictly inside the unit circle | z| = I. The frequency re-
sponse of G(z) is the function G(e’) restricted to the
domain |w| = x, where w is the frequency variable nor-
malized with respect to the sampling frequency. For a stable
transfer function G(z), the &, and #, norms are defined
as

e

1Gll .. & o |G (e’)| (3)
(U g '
||Gn_,~;:‘(;;r/ IG(e’“‘)i’dw) : (4)

Sequences: A sequence x is a function of discrete-time
points, i.e., x: 8 — R where ] = {1,2, :--} is the set of
positive integers. We write x(f) to mean the value of the
sequence at a particular time ¢, normalized with respect to
the sampling interval. Hence, time takes on integer values
with initial time defined as = 1.

Following {24}, a sequence x is quasi-stationary if
& (x(1)) is bounded for all ¢ and its autocorrelation

1 N

r,(r) = lim — Alx(t)x(t — 71 S
wl7) = lim SN A (x(x(e 7)) ()
exists for all integers 7, where £(-) denotes the expectation
operator. If x is a deterministic sequence, the expectation is
without effect and quasi-stationary then means that x is a
bounded sequence such that the limits

| A

lim — 3 x(f)x(r - 7) (6)

r T) =
xx( ) Nesco le|

exist. For easy notation, we introduce the symbol & by
_ . XN
A(x) 2 lim -- Y &(x(D). 7
(1) 2 tim 2 5 & (x(1) ™)
The power spectrum of x is defined as

rodn)e T (8)

e
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This leads to the power in x given by
N

> “(x(1)).

(9)

Similar definitions apply to the cross spectum S, (w) of the
sequences x and y.
The sample-mean operator ¢

1
o N,

Ferl0) = o= / Seulw)do = lim

k( ) 1s defined to be
&

=3 x(0).

(=1

éak(x) (10)

We use || x|}, to denote the truncated /,-norm of a sequence

Ixles & (glx(,)z)% (11)

hence,

1
Ee(x?) = ;"x"iz (12)

Linear Operators: The notation Gx means the sequence
obtained when the system G operates on the sequence «. We
write (Gx)(f) to mean the value at time ¢ of the sequence
Gx.

When we say that G is a linear-time invariant system, we
mean that Gx is the convolution operation

-1

(Gx)(4) = Eog(k)x(f - k) (13)

where the sequence g is the pulse response of G. Thus, G
has the transfer function

6(2) = ¥ (k)2 (14

The above definition restricts the sequence Gx to ¢ = 1.
Hence, the system G can be regarded as having no memory
of events prior to ¢ = 1, the initial time. Roughly, this means
all initial conditions are zero,

To reduce notation, we use the transform variable z to
denote the shift operator, so z¥x(1) = x(1 + k). 2 *x(1)
= x(¢ — k), and z*x shifts each member of the sequence x.

[II. PrOBLEM FORMULATION
The problem is to use the measured sampled data

{yout =1, N} (15)

to identify a model set suitable for robust control design. The
system which produced the data is assumed to be a linear-
time invariant system of the form

=Gu + v (16)
where G is a lincar-time nvariant system with transfer func-
tion G(z), u is an applied input, y is the measured output,
and v 15 a disturbance as seen at the output. §t 1s also assumed

that both y and u« have finite power, that s, r

! ,,{0) < o0 and
7.£0) < .

A. Model Set Assumptions

The model sct 4 is defined as follows:

M= y=GCGu+uv Ge %, ve iy

(17)
where 4 is the set of hincar-time invariant systems and ¥ s
the set of disturbances. It 1s assumed that the true system (16)
is a member of the model set .#. The reader should be
cautioned that G defined in the model set &4 1s not the
same as G in (16). To avoid adding more subscripts G,
etc., unless otherwise stated as part of some set, e.g.,
Ge 9, the symbols G, y. u, and v refer to the true system
(16).

We first concentrate on the disturbance-free case, i.e.,
v = 0, in the next section. The disturbance set ¥ is dis-
cussed later in Section V.

The set of linear-time invariant systems is defined by

FE{Gy(1 + AgWs): 0€0,,,,. [Acll . <1} (18)

where G,p(2) is a parametric transfer function with parame-
ters 6 € ©,,,,, referred to as the prior parameter set. The
system AW, is referred to as the multiplicative nonpara-
metric uncertainty. It is a dynamic uncertainty characterized
by an uncertain but unity bounded stable-transfer function
A5(z) and a known stable-transfer function W;(z). Note
that Wg(z) acts as a frequency weighting function, whose
frequency response magnitude | W;(e’)| reflects the size of
the nonparametric uncertainty. Since a parametric model of a
system is never complete unless we have some idea on its
limitations and accuracies, we assume that the uncertainty
weighting function W(z) 1s known. Having knowledge of
W, is precisely the assumption made in robust control
design, e.g., {8]. However, the center of the model set is
fixed in robust control design, here it is parametric. i.c., G,.

Suppose the true system G is in % and we are interested
in all the possible representations of G in 4. Solving for A
in (18) in terms of G and @, we get

a2 O G 19
o (19)
We define
G -G
er 2 {9 — = 1} (20)
WGGG 7,

and refer to ©* as the parametric limit set because it does
not depend on the data set but rather on the true but unknown
system G. As a result, ©* N 6 is the set of all possible
parameter values consistent with the assumption that the true
system G is in . Consequently, it is not possible to
concider a ‘‘truc’’ parameter value because any member of

? Input and output sequences with hinie power occur, for example. when
G is stable and o has fimte power. or when G, not accessanly stable
stabibized by an appropriate feedhack and the cxogencous inputs 1o the
feedback system have finne power
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©* N Q,,, is a possibility since the decomposition of G
into G, and A is not unique. Thus, the goal is to obtain an
estimate of the set ©* from the measured data.

Throughout the remainder of the paper we further charac-
terize the parametric transfer function G,(z) by using the

standard ARX form [24]
G.(z) = By(2)/ Al(2)
By(z)=bz7"+ - +b,z7™
A2y =1+az7'+ - +a,z27"
0={a - a,b - b,]". (21)

Thus, the parameters are the coefficients in the parametric
transfer function. With this parametrization, the limit set

T e )

The problem we are addressing in this paper is to find an
estimate of ©*. We should also point out that other than
what is assumed for the transfer function Ag(z), we do not
estimate it from the data. We first give an example of ©%,
and then in the next section, describe a set estimator in the
disturbance-free case.

AUG - Bo
WGBO

e* = (22)

B. Example of Limit Set
Suppose that the true transfer function is

G(z) = zm{(i)

s+ 1

102
(s’ + 2(0.005)(10)s + 102 ) } (23)

The sampling frequency is chosen to be 2 #(10) rad/s or 10
Hz. Observe that the system has a simple pole at | rad/s, and
a very lightly damped resonance at 10 rad/s. Suppose we are
interested in obtaining a good low-frequency mode! by ne-
glecting the resonance, but accounting for it as one realiza-
tion of some nonparametric dynamics. Thus, select the para-
metric transfer function as

-1
G,(z)=l-isz:,-,0={Z]. (24)
Consider the following weights:
We.(2) = 65[9’0#{f~+—1~}]4 (25)
) s+5
l 4
Worlz) = Wold) -65(5) . (9

Either of these weights can account for the resonance, but
they reflect different prior low-frequency uncertainties. The
weight W, | reflects a low-frequency multiplicative uncer-
tainty of about 10% where it has a dc gain of about 0.1, and
it anticipates a rather large resonance at frequencies beyond

38

about 10 rad/s where the magnitude of W, | is greater than
100. W, , is essentially the samc but has a zero dc gain.
Shown in Fig. 3 are the (requency response magnitudes and
the multiplicative error with respect to a **nominal'’ paramet-
ric transfer function

10
Gy (2) = 72 —— 1}
ool 2 {H 1} (27)
With the sampling frequency of 10 Hz,
a
| Trom | _ 1 —0.9048
B oo [b,,,,m] { 0.9516]' (28)

This transfer function can be viewed as an approximation of
G(z) obtained by neglecting the resonance in (23). Remem-
ber, there is no true parameter value, rather, there is a true
set ©*, one clement of which is this nominal parameter
value.

Points in the limit set corresponding to the above weights
are shown in Fig. 4. These points are obtained by testing § in
(19) over a set of points. If a point’s corresponding A,
satisfies [|agll, =< 1, then it belongs to ©%. Since
W, ,(e/°) is zero at w = 0, i.c., the dc gain of G(z) is
assumed known, and the two parameters in § are constrained
to lic on a line in the parameter space. The line becomes
“‘blurred’” in the limit set corresponding to W, , because
there is no frequency where the frequency response of W ,
is identically zero.

IV. DisTURBANCE-FREE EQUATION-ERROR SET
EsTiMATION

In the disturbance-free case, we have v = 0. Thus, the
model set in (17) reduces to

M ={y==Gu:Ge %) (29)

with 4 given by (18).
Theorem 1: Suppose the measured data {y,u: =

1,~++, N} is generated from y = Gu with Ge 9. Then the
following holds:

©*c O[N] c©,. vke[l,N],vNeR (30)
where O[N] and O, are given by
O, £ {0: | Agy ~ Byull,, < | WoByull .}

O[N] & 66*'

(31)
(32)

Remarks: We refer to ©, or O[N] as equation-error
parameter sets because the equation-error term A,y — Byu
appears in the definition {24}. Observe that the equation-error
sets depend only on the measured data and the known bound-
ing transfer function Wys(z). Because O is a subset, it
follows that 6, for any ke[l, N] or ©[ N} is an estimate
of ©*. These sets arc easy to compute as will be shown in
Section 1V-C. First we prove the theorem.

Proof: First, recall the following fact from [7]. If T is
a stable lincar-tune invariant operator with transfer function
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T(z), then
N7 ..

Il

sup | T(e’)|

|lwl=sw
N Tx ) iz

Ixfgaz0 XN e2
keM

sup {v: [ Txfl 2 = vl xfl 42>
V] x|i2 < . VkeN}.

As a direct consequence, we also have

To show that

sup [ Txll e, = vl Xl 42-
1The sy
8*cH,, vkei

let 6*€ O7, ic.,

By,
G- /_1_0__(! + A'(';W:;)

ne

(33)

(34)

(35)

(36)

(37)

(38)

with ||A%|| . =< 1. Note that 6* and A% must agree with the
measured data, so

Ag.y — Byt = AW, By (39)
Taking the /;-norm, we have
N Agey — Bgoufly = 18GW; Byoutlf, ;. (40)
Since || &%l . = 1. (36) implics that 6* must satisfy
| Agey — Byeufl iy < | Wi Booull 4y (41)

Therefore,
0*c{6: | Agy — Byull,, < | W Byull iy} = 6, (42)

for ©8* ¢ ©,. From this, it follows immediately that ©*
B[ N]. 1]

A. Frequency-Domain Expressions
Define the asymptotic equation-error set as

e, 2 lim 8,.

koo

(43)
The limit set ©* and the asymptotic equation-error set 6,
are expressed in the frequency domain in the following
theorem.

Theorem 2:

i) The limit set has the following decomposition:

0% = O, N Ofeq (44)
where
) A4,G - B,
b = a: W stable (45)
Ofig = {01 | Ap(e’)G(e’) - By(e”™)]

= | Wo(e=) By(e™) |, ¥ w| = x}. (46)

ity If y = Gu and u has spectrum S, (w), then

e, = {9:_1-/-'(1/100_3”2

2xJ_,
~ | W;B,|?)S,, du =< 0}. (47)

Proof: The decomposition of ©* follows directly from
the definition of the J#, norm. The asymptotic set descrip-
tion is a direct application of the spectral expressions in
(9). O

Theorem 1 states that 8% < ©, for all k. It is clear from
the frequency-domain expression for ©* that ©* © 6_ also
because 8 € ©* implies that the integrand in the frequency-
domain expression for ©_ is negative. Note also that the
definition of ©* describes a parameter set via an ¥, norm.
By comparison, ©,_, is described via an #°, norm when u is
white noise with S, (w) = 1, ie.,

6 =

on

——— = (48)
i WeBoll »,
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B. Use of Data Filtering

The effect of data filtering is to replace (y, u) with
(Fy, Fu), where F is a filter with transfer function F(2).
Hence

O, = {0: | AgFy — ByFull,; < | By3WgFull,,}. (49)

The effect of the filter is scen more clearly in the frequency-
domain expression

1 L 4
e,:{e:——/ (1 4,G - B>
27/ _,
— | WBy|?) | F|%S,, dw=<0}. (50)

The filter and the input spectrum form the frequency-depen-
dent weight | F(e’“)|2S,,(w) which also appears in stan-
dard equation-error minimization methods [24].

C. Computing the Equation-Error Set

Ideally, it is desirable to compute ©{N]. This involves
intersecting the N sets

{8 k=1,--,N}.

We start with the following result which presents a conve-
nient form for computing 6, .

Theorem 3: Define the following vectors whose elements
are sequences:

¢y
¢ = 51
] ()
fay -1 -n T
6,8 [—zty e -z (52)
¢, 8 (27w e zmmu]’ (53)
Then,
i) ©, can be expressed in the quadratic form
O, ={0:0"T0 —~ 28[6 + o, <0} (54)

where a, €R, B, eR?, and T, €R?*? (with p=m + n)
are given by

ap = &(¥?)
By = ¢ (¢y)

0 0
T, = 6,(¢07) - [0 El(Woo,)(Woe.)") | e7

il) Provided T, ' exists, another expression is

(55)
(56)

O, ={o:(0-0)T(0-6)=w} (58
ék = Fk— tBk (59)
Vi = Bkrrk_lak T Q. (60)

1if) All the eigenvalues of T', are real and some of them
can be negative. When I', > 0, O, is an ellipsoid in [37.
When I', is indefinite, ©, is an hyperboloid in R *.

Remarks: In part ii), the center of the set ffk 1s identical
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to the ordinary least-squares esuimate when W, = 0. This
occurs only when nonparametric dynamics are neglected.
Proof: Using the definitions in the thecorem, we have

Agy =~ Bu=y—-07¢ (61)

Wg By = 0T W,; ,;,) l (62)
Hence, substituting into (31), we have
0
O, = {0ew;||y—o’¢||“s efwc[d, ] } (63)
“ k2

Usiag (12), the quadratic formn of O, follows immediately,
which proves part i).
Part ii) is obtained by direct substitution when I'; ' exists.
To prove iii), observe that I, can be expressed as follows:

Fen T n]
r, = : ' (64)
‘ [I‘{. 2 Ten
where
Fk,ll = gk(¢y¢;) (65)
Fk.u = "pk(d’yd’:) (66)
Te. = €(du0l - (Wc¢u)(WG¢u)r)~ (67)

The T, ,, matrix subblock can obviously cause I', to have
negative eigenvalues. The square roots of the eigenvalues of
I;! are the lengths of the semiaxes of the ellipsoid. There-
fore, as I', becomes singular, some directions of the ellipsoid
become unbounded. A hyperboloid results when one or more
eigenvalues of ', become negative. a
Note that if the spectrum of u is concentrated at those
frequencies where | Wg(e’*)| is large, the T, ,, matrix
subblock can have negative eigenvalues. This tends to make
[, become indefinite, so that 6, becomes an hyperboloid.
This will be illustrated in an example in the next section.

D. Example of ©,

The true system was selected, as in the previous example
in Section III-B using the weight W, , defined in (25). The
input was a log-spaced sinesweep from 0.1 to 31 rad/s over
102.3 s, thus, N = 1024 data samples. Two filtered data sets
were generated using eighth-order low-pass Butterworth fil-
ters; one with a bandpass of w, = 2 rad/s, and the other with
w, =1 rad/s.

Fig. 5 shows ©,4,, processed with the two data filters. An
hyperboloid is obtained with w, = 2 rad/s and an ellipsoid
with w, = 1 rad/s. (Note that only one branch of the hyper-
boloid is shown in the figure.) This confirms the earlier point
that when # is concentrated at those frequencies where
| Wg(e’*)| is large, ©, can become unbounded. Points in
the limit set 8* are shown and, as predicted by the theory,
are all contained in the equation-error sets.

E. Computing Intersecting Ellipsoids

To compute O N requires computing the intersection of
the sets {O,: k = 1, -+ N}. Since all the 8, are convex, it
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follows that ©{N] is convex. In general, it is not, however,
an ellipsoid. To see this, we plotted some of the bounding
ellipsoid sets in Fig. 6. Specifically, it shows

{6,: k = 200,300, - -, 1024}

corresponding to the previous example using the data filter
with cutoff at 1 rad/s. Observe that the intersection of the
sets produces a smaller (convex) set. Several .approaches are
possible. One approach is to compute the smallest volume
ellipsoid that contains the intersection of the ellipsoids. This
is discussed in [6] and (3].

F. Effect of Initial Conditions

As defined in Section II, the sequence Gu evaluated at
time €@ is defined by

-1

(Gu)(0) = X a(rJulr=7).  (68)

To account for initial conditions, let & denote a bounded
input applied for ¢ < 0. Thus, the system with initial condi-

tions can be cxpressed as

y=Gu+y (69)

with

y(O) = > g(r)a(e — 7)., viel. (70)

r={

If G is stable or is in a stabilizing feedback, then y(r) — 0
exponentially as £ — o. Thus, the effect of initial conditions
dies out exponentially fast, or slow, depending on the slowest
modes in G or the closed-loop system. Hence, for suff-
ciently large N, we have G, = G_,. More precisely, for
each 0 € 9,

lim _inf 6 -éyjl=0

N-w §,e

(71)

where || « || is 2 norm on R”. In words, the estimator will
eventually report possible parameter values that are close to
the asymptotic set, and hence, asymptotically bound the limit
set ©F as the data length N increases.

Another way to account for the effect of initial condition is
to assume bounds on i and the tail of g

N

;ng(r)t <x, (72)
la(e)} <x,, (=0. {73)

Then | (f)| < x,«,, and it can be treated as a bounded
disturbance in (69), see e.g., [30].

G. Other Forms of Nonparametric Uncertainty

The equation-error sets we have developed so far assume a
multiplicative form of nonparametric uncertainty. This is not
a necessary restriction as they could also have been devel-
oped for other forms. The requisite modifications are shown
below for some other typical forms.

Theorem 4:

i) Multiplicative: If

By
G= 7‘(‘ + 45 W), laglle =1 (74)
]
then
O, =1{0: 1 4y» — Byully, s || WsByull 42} (75)
ii) Additive: If
By
]
then
O, = {8: ]| Agy — Byull,, < || W Agul 2}, (77)
iii) Inverse Multiplicative: 1f
= —_— — ], A < 7
Al Traow ) Meelest ()
then
O = {0: [ Ay = Boull (s s WW, A v} (79)
41
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iv) Feedback: If

G=— — B, | lagh-. =<1 (80)

then
O, = {0: | Agy — Boull 2 s I W5 By yllia}. (81)
v) Coprime Factored (Coupled): If
=____j::':i"pz, [2: !.51 (82)
then
O, =10: | 45y — Byullsy = [gau } (83)
47 Jlle2
vi) Coprime Factored (Uncoupled): If
D e R LY PEIH IV PESRCD
then

6, = {0: | Agy ~ Byutll 2 < [Wattll 2 + I Walia}-
(85)
vii) All the above set estimates ©, have the property that
6* c ©[N] c 6,. (86)

Proof: The proof of the property ©* < 8, for all the
cases above is similar to the proof for Theorem 1. We will
show it for case vi) only. Let 8% € 6%, i.e.,

B,, + A%, W,
T (87)
with
| A%l . = land [[a% ]l < 1. (88)

Since 8%, A%, and A%, must agree with the measured data
(89)

Now take the /,-norm and apply the triangle inequality with
(88), 6* must also satisfy

| Agey = Bpatt|| oo < | Wattll 2 + | Wasllaz- (90)
Therefore,
0*e {6: | Ayy — Byull\, = | Waull,

+HWarlea} =00 (91)
and 6* € 6,. 0
From these forms it is straightforward to generate the
corresponding quadratic forms for computing the sets. In
those cases, when the right-hand side of any of the above
inequalities does not depend on the parameter 6, the center of
the parametric set is the usual least-squares estimate, e.g..
132].

Agey — Bpou = Ay Wou ~ A W, y.
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V. EQuaTioN-ERrROR SET EsTiMATION WITH
DiISTURBANCES

Therc are many ways to characterize the disturbance envi-
ronment both in terms of the location and the type of
disturbance. To simplify the discussion, we assume that the
disturbance is located additively at the output, as given by
(16)

y=GCu+v.

The most common type is the stochastic disturbance which
we coasider in this section. Deterministic ** worst-case’’ types
of disturbances are discussed briefly in Section VI.

A. Stochastic Additive Disturbance

Suppose that the disturbance v is a zero-mean quasi-sta-
tionary sequence in the set

v={v: §,(w) = o | Wy(e™) 12,

Sulw) =0.vlwl =7} (92)

where W, (2) is a stable and stably invertible transfer func-
tion. Equivalently, we can think of v as the output of a stable
uncertain linear-time invariant system /A with a white-noise

input e. Hence,
v=He (93)

where H is in the set of linear-time-invariant systems # and

e is in the set of stochastic sequences ¥, defined as
follows:
HE {Ay Wy, stable: A, <1} (94)
W = {White noise e: S, (w) = ¢} <02, S, (w) =0,
V|w| = 7, bounded fourth moment}. (95)
The disturbance set then becomes
V={v=He: He ¥ ee ¥ ,}. (96)

Assuming that W, and ¢ are known, the disturbance set
defined above is otherwise parameter-free. One can compare
this set description to % which contains the parametric
transfer function Gy(Z). As it is, the disturbance set is
perfectly adequate for describing a sensor noise. However, in
the case of a general disturbance refiected to the output, the
set merely serves to provide an upper bound. For small
disturbances this is adequate, but the set is potentially conser-
vative otherwise. For a more complete discussion on this
matter, see [19].

We now have the following.

Theorem S: Suppose that the true plant which generated

{y,u: t=1,---, N} has the structure described above.
Then
i)
Oy~ 0, wp lasN-—=o (97)
1)
o*c o, (98)
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where the equation-crror scts are now defined as follows:

On 2 {0: & ([Wir' (4,7 - Bu)]’)

< A‘N((W;,'WGB,,M)Z) +02(1 + OIGA)} (99)
0. 2 {0: ([Wi'(4,y - Bu)]')

< E((W,‘,‘WGB@u)Z) +o?(1 + 0}0,,)} (100)
with

04 £ [al

iii) In the frequency domain

a)”.

(101)

P So(w) w <
o= {057/ Tangeme 5o o

with
fa(“’) = (| A,G - Bo|2 - | WGBO|2)Suu(w)
+ | Ag|12(1 H|?S.(w) - | Wy i%0?). (103)

Observe that both the finite-data set ©,, as well as the
infinite-data set ©,,, depend on the noise intensity o and the
disturbance weighting transfer function W, whose inverse
acts as a data filter, The theorem is analogous to the many
prediction-error based parameter estimators in the sense that
for a sufficiently long data length N, the estimate is equal to
the true value with high probability [24]. In our case, the
finite-data set ©,, will contain ©* with high probability. Part
1) of the theorem means that for each 6 € 8, there is a
0, €0, close to it as N increases. More precisely,

inf |8 ~ byl =0

wp.las N—- o (104)
6EON

where |j - || is a norm on R”.
The integrand in the frequency-domein expression for O,
is always negative provided that for all {w] = «x

B,

G‘Z;

H
= S (IWH|2‘72_ tH|ZSee)'

(105)

We can now see the usual effects of signal-to-noise ratio. As
the noise power ¢? increases, the ‘‘volume™ in O, will
increase. Conversely, if S, (w) is large at many frequencies,
Q,, will shrink. In addition, in the frequency ranges where
| W,(e/*)| » H(e’®), an indication of poor prior informa-
tion, very large-input power at these frequencies is required
to keep O,, small.

Proof: Under the assumptions, the true system can be
expressed as

Bﬂ
y = —/—1—(] +AGW(;)U+A" WHl.’ (106)
0

for some Al ,. < 1. A ., < 1. and ce ¥,

stoch -

Rear-

ranging terms and filtering by W,,' gives
Wi'(Agy — Bu) = A W' Wi Byu + &, Aje. (107)

Squaring both sides and taking autocorrelation at 7 = (), we
get

g([wf;l(Ao)’ - Ba“)]z) = E((AG WI;IWcBa“)z)

+ ‘E((AH Aae)z) (108)

where the cross terms (between e and u) are zero because e
and u are independent. Now take the supremum of the
right-hand side to obtain the infinite-data parameter set

e, = {0: E([Wa'(a,y - B’")lz)

< sup [2((1&0 W[,'WGB,u)z)
Bg. 8y,
—— 2 N
+E((au 400} (109)
To evaluate the right-hand side above, we now use the

assumptions [Aglle <1, fALll, <1, and ee ¥, to
obtain

sup é'_((AG W,','WGB,u)z) = g((W,}‘WGB,u)z)
(7Y P

(110)
sup  sup  E((8y Age)’) = sup E((Age))
LR A V. 79 P ec W n
(111)
=tlAly, (1)

H

az(l + é‘ai) (113)

o?(1 +678,,).

This yields the set ©_ as defined in the theorem.

Observe that Oy has precisely the same form as 6,
except that the operator £(+) is replaced everywhere with the
sample mean &u(-). To show (97), recall from {24, pp.
34-35] that if the stochastic part of x can be described as
filtered white noise, then the spectrum of an observed single
realization of x, computed as for a deterministic signal,
coincides, with probability 1, with that of the process, i.e.,

(114)

1 N ~
Jim &, (x?) Jlim — Z;I &(x(0)) = &(x?). (115)
The conditions for this convergence are that x is a quasi-sta-
tionary sequence and the white noise has bounded fourth
moment. Note that since 4 and y are assumed to have finite
power, W;'(Ayy - Byu) and W' W, Byu are quasi-sta-
tionary. Thus, the convergence in (97) holds.

To show that ©* € ©_, we use the frequency-domain
expressions in iii). Observe that the frequency-domain ex-
pression for ©_ can be obtained by substituting y = Gu +
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He in (100) to get
o, = {0: E([W:?I(AOG — B))u + WI;IAOHelz)
= éT((W;{*WGB,u)’) + A,”f,,:}_ (116)

Now use the fact that u and e arc independent to simplify,
then apply Parseval’s theorem. In the frequency-domain ex-
pression, the assumption H € J# means that

| H(e’“)|3%S,.(«) = | Wy(e’*)|?e? =0, vw (117)

and 0 € ©* means that

| A4;G — By|* — | WBy |2 <0, va. (118)

Thus, & € ©* guarantees that f,(w) is negative for all fre-
quencies, and hence, 8* € 6,.. O

1) Example of Bias Estimation: As an illustrative exam-
ple, consider estimating a constant in noise

y(t) = by + e(t). (119)

In this case, W,(2) = 0 to reflect the absence of nonpara-
metric uncertainty, and H(z) = 1. In addition, Wy(2) = 1,
and He# is satisfied. If ee ¥, then the set estimate
for by is

Oy = {b: (b-b) =0~ &((r - 5)} (120)

where b = én(y). For large N, the right-hand side behaves
as 0% — ¢f, where of is the true noise variance. Note that
the limit set ©*, in this case, is the point b,. Since b — b
as N — o, we see that ©* € O_, as stated in the theorem.
Furthermore, as the bounding variance ¢ approaches ad,, the
set ©_ becomes a point. Observe that 6, does not shrink to
a point when there is nonparametric uncertainty, i.e., Ws(2)
*+0.

B. Computing the Equation-Error Set

For computing ©,,, we have the following result
Theorem 6: As in Theorem 3, define the vector sequences
¢, ¢,, and ¢,. Then:
i) O, can be expressed in the quadratic form
Oy = {0:07Ty0 — 28L8 + ap = 0} (121)

where ayeR, ByeR?, and I'yeR?*? are given by

oy = E((Wr'y)) - o2 (122)
By = En((Wyr'e)(Wi'y)) (123)
Ty = 6n((Wi's)(Wi'e)")
o’ 0
- . (124)

0 é.N((WI;'WG‘bu)(W;l'WG'tu)T)
ii) Provided T'y' exists, another expression is
LT
Oy = {0: (0 - 6,) Tw(0 - 65) < ¥} (125)

0y = Iy '8y (126)
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iii) When I'y > 0, Gy is an cllipsoid in {17 and when T,
is indefinite, O, is a hyperboloid in [ 7.

The proof of the above proceeds along the same lines as
that of Theorem 3, and is omitted.

The infinite-data parameter set cestimate can also be ex-
pressed in a form identical to that for the finite-data set

(127)

6, = {0:a -2870 +07T0 <0} (128)
where celfl, BelR”, and T e ”** are given by
a=E((Wi'y)) - o (129)
B=E((Wa's)(Wa'y)) (130)
r=&((wz'e)(Wa's)")
ol, 0
- . (131)

0 E((Wa'Wet)(Wi'Wos.))

C. Example of ©,, with Disturbance

The example system is as before with G given by (23),
and W, given by (25). The disturbance dynamics is

HY 0.1 132
=709 (132)
and the disturbance weight is
1
Wy(z) = ——H(z) (133)
oy

where 64 € (0, 1) is a parameter chosen by the user.

The disturbance v is simulated as the output of H driven
by e, a sequence of independently distributed Gaussian vari-
ables with zero mean and variance o2. Three series of
experiments are carried out to study the effects of noise
power (choice of o), mismatch between H and W, (choice
of &), and length of data record (choice of N). In the first
two experiments, the input u is a linearly-spaced sinesweep
from 0.01 to 0.5 rad/s over 102.3 s, giving N = 1024 data
samples. In the third experiment, N is varied.

To study the effects of noise power, o is varied in this
experiment. As suggested by Theorem 5, the parameter set
estimate should expand as ¢ increases. This is supported by
Fig. 7, where Gy is plotted for ¢ = 0.1,0.2, and 0.4. Note
that in all cases shown here, 6* < Q,,.

In Fig. 8, the value of 6, is varied from 0.6 to 1.0,
Again, as suggested by Theorem 5, as the mismatch between
H and W, becomes larger, i.e., | §,,| becomes smaller, 8,
grows.

The effects of different data record lengths are studied in
the last experiment. For the cases of N = 1024 and 2048
with ¢ = 0.5, and §,, = 1.0, ©* is not in O, This is still in
agreement with our results because in the stochastic distur-
bance case O is only guaranted 1o be in Oy as N tends to
infinity. As shown in Fig. 9, 0% is in O for N = 4096.
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V1. SoME EXTENSIONS

In this section, we first consider the extension of our
results for the equation-error set estimates to the output-error
set. We then consider disturbances which are deterministic in
nature rather than stochastic, as considered in the previous
section.

A. Disturbance-Free Output-Error Set Estimation

The results obtained for the equation-error set in Section
IV can be repeated rmutatis mutandis for the output-error
set, but for the notable exception of forming a quadratic set
for computational purposes none exists for output-error iden-
tification [24).

Theorem 7: Suppose the measured data {y,u: t=

1,--+, N} is generated from y = Gu with Ge 9. Then the
following holds:
O*c O[N] c O,  vke[l.N],vNel (134)

where O7Ff N} and 69 are the output-crror set estimates
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Fig. 9. Oy for different values of N (0 = 0.5, &, = 1.0).

given by

6% = (§: y - _,B:E_u
k . A,

=

W—’—u
GA,

| (e

k2

N
O[N] = () 0f"

(136)

Remark: We refer to ©2° and ©°(N] as output-error
parameter sets because the output-error term y —
(B, / Ag)u appears in their descriptiors.

Proof: The proof of ©* € B°°[N| = 67¢ is identical
to the one for Theorem 1. a

The sets ©, and ©F° are both worst-case estimates, both
contain ©%, but they are not necessarily the same sets for
identical input sequences. Another major difference is that
both sides of the inequality in ©, are affine in 8, whereas in
O;° they are linear fractional in 6. The former property
makes it very easy to compute B,, as has been shown,
whereas the latter makes it difficult to compute the output-e;-
ror sets, as usual.

B. Deterministic Additive Disturbances

So far, we have only considered stochastic disturbances.
We now briefly examine the effect of deterministic distur-
bances.

Suppose, as before, that the true system is
y = Gu + He (137)

with Ge ¢ and He ¥ as previously described. We now
consider the following deterministic set which describes
quasi-stationary sequences with bounded spectra:

B = {€(1): Seew) < 0pc, Viw| < x}. (138)
We then obtain the following.

Theorem 8: 1If e€ ¥, then

6= {o: e ([Wi'(4,y - B

< \/A'k((w,;'wcn,,u)’) oy, \/Tﬁéfé;} (139)
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and
0* ¢ lim ©,. (140)

k—~oo

Proaf: The proof of (140) proceeds the same as Theo-
rems | and 4. Let 8* € 6%, then

W (Agey ~— Bpuut) = AGW, ' Wi Byt + 84, Agee.
(141)

After squaring both sides and taking the sample averages, the
Schwarz's inequality, [|AGll . =1, and {jA,ll, =1 arc
applied to obtain

\/e’k([W,;‘(A,.y - B,.u)]z) < \/Jk((W,‘,‘WGBa.u)Z)

Y é'k((Aa-e)z) . (142)

Now let k — oo, we have

6% e {a: JZ([W;,'(A,y - Byu)}’)

< E((Wa' WoByu)') + e /1 + 030, } (143)

and 6* € lim, _,0,. ]

In both cases of stochastic and deterministic disturbances,
the limit set ©* is contained in the set estimate as the data
length tends to infinity. However, in the deterministic case
here, the probabilistic convergence need not be considered.
The reason that both cases can be handled in the same way is
because a comumon framework is used for deterministic and
stochastic signals, [see (5) and (6)]. Note that instead of using
Wipee 10 describe the deterministic disturbance e, we can
also use

1 N
. = e(t): Jnﬁx}; ~ (Z_:‘e(t)z < al, (144)

to describe e and obtain results similar to Theorem 8.

VII. CONCLUDING REMARKS

The set-membership approach to system identification starts
with the assumption that the underlying true system which
generated the measured data is in a known set characterized
by some unknown parameters and unknown but bounded
nonparametric dynamics. We then derived set estimates for
these unknown parameters. In the disturbance-free case, the
set estimate has the property that it always contains the limit
set. In the presence of stochastic disturbances, the set esti-
mate is shown to have the property that it contains the limit
set with probability one as the data length tends to infinity.

The set estimates derived in this paper also have some nice
properties for computation. For the equation-error estimates,
the set expressions are quadratic in the parameters. Thus, the
set estimates arc either cllipsoids or hyperboloids in the
parameter space. Furthermore, these sets are easily obtained
by computing avcrages of the fltered input-output data.
However, when the output-ecror form is used in the sct

cstimate, these nice properties are lost, which 1s typical with
autput-error identification.

The next step is to use thesce set estimates with a robust
on-line control design procedure. One approach would be to
bury the parameter uncenainty wn another nonparametric
uncertainty by finding an overbounding frequency-dependent
weighting function. This is a potentially very conservative
approach. Alternatively, the minimax approach in (22} and
{21] presents a robust control-design procedurc to handle the
specific type of parameter uncertainty as represented by the
ellipsoidal sets. This is a current topic of our research.
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Robust Control Design for Ellipsoidal Plant Set

MiNG K. Lau*t STEPHEN Boyp*

Abstract This paper presents a control design method
for continuous-time plants whose uncertain parameters in
the output matrix are only known to lie in an ellipsoidal
set. The desired control is chosen to minimize the maxi-
mum linear quadratic regulator (LQR) cost from all the
plants with parameters in the given set. Although no par-
ticular form is assumed for the minimax control, it turns
out that it is the LQR control for one of the plants in
the set, the worst-case plant. By defining an appropriate
mapping, which maps an element from the given ellip-
soidal set to an element of the same set, the existence of
this worst-case plant is proved. A simple heuristic algo-
rithm used to compute the worst-case plant is also given.

1 Introduction

A problem of great interest in control theory is the design
of a controlier which can guarantee some level of perfor-
mance in tiie presence of plant parameter uncertainty.
Kharitonov’s theorem provides a necessary and sufficient
~nalysis test for determining the robust stability of poly-
nomials with perturbed co=flicients, however, there are
few resuits that exploit Kiaritonov’s theorem for synthe-
sizing robust controllers, e.g., [7] and [12]. Another ap-
proach to this problem is to define a set of nominal values
of the uncertain parameters and consider deviations from
these nominal values. A comprehensive survey of the dif-
ferent parameter space m~thods for robust control design,
as opposed to frequency domain methods, can be found
in [23].

The technique of solving control problems as minimax
optimization problems is the basis of the so-called “H
optimal control theory.” In the standard H, problem,
the control input is chosen to minimize the norm of the
output and the exogenous input is chosen to maximize it
[2). Along this line, the structured singula: value () syn-
thesis method is used to find controllers which minimize
a H, objective subject to plant perturbations, e.g., see
{8]. [9), and references therein. In [20], a game theoretic
approach is used, where the control, restricted to a func-
tion of the measurement history, plays against adversaries
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composed of the process and measurement disturbances,
and the initial states. Another exampie of solving control
problems as minimax problems is (18], which presents a
controller design method to minimize the weighted sum
of the maximum linear quadratic gaussian (LQG) per-
formance objeclives over a set of worst plant parameter
changes.

The approach of using set-membership to describe
plant parameter uncertainty has gained popularity in re-
cent years, e.g., [14), [16], [26), (3], [17], and references
therein. This approach of parameter identification is orig-
irated from early works of [22] and [5], where the set of
possible system states compatible with the observations is
shown to be an ellipsoid. Motivated by ellipsoidal bounds
on plant parameters, we pose the following robust control
problem: given that the unknown parameters in the out-
put matrix of the plant are known to lie in an ellipsoid,
find the control which minimizes the maximum LQR cost
from all plants with parameters in the given set. Viewed
in terms of game theory, the control and plant uncertainty
are strategies employed by opposing players in a game,
where the control is chosen to minimize the LQR cnrst
and the plant uncertainty is chocen to maximize it. As a
special case of our problem, finding the finite-hor’ .on con-
trol for a discrete finite-impulse response (FIR) plant, was
solved in [15]. In that case, it was shown that the mini-
mization is a convex optimization problem. In this paper,
we are generalizing the robust control design problem to
find the infinite-horizon controls for continuous plants.

The assumption that the output matrix in the plant de-
scription contains all the uncertainty deserves further dis-
cussion. First, this is a natural extension of the discrete
FIR finite-horizon problem solved in {15]. In the discrete
case, FIR model sets can be identified from input-output
data of a plant, i.e., the coefficients of the FIR model are
identified to belong to a set. This is particularly attrac-
tive when a bounded noise model, often a more realis-
tic assumption than a statistical noise model, is used in
the identification [19]. In the continuous case, Laguerre
models can be used so that the identification is reduced
to estimating the Laguerre coefficients [25]. Uncertainty
in the Laguerre coefficients can then be described by set
membership of the output matrix. Second, by limiting
uncertain parameters to the output matrix, we simplify
the analysis and gain more insights into the nature of the
solution

The paper is organized as follows, after stating the
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problem in the next section, the minimax control ts
proved in section 3 to be the LQR control designed for the
worst-case plant from the given ellipsoidal set. By defin-
ing an appropriate mapping, which maps an element of
the given set to an element of the same set, the existence
of this worst-case plant is proved. In section 4, a simple
algorithm used to compute the worst-case plant is given.
A two-mass-one-spring example is used in section 5 to il-
lustrate the ideas presented. The paper concludes with
some remarks in section 6.

2 Problem Formulation

Couszider the following family of systems

z(t) = Az(t)+bu(t), =z(0)==zo (1
vty = (1), (2

where A, b, and z; are fixed and given, and

ce0={0:(0-6.)TR(6—-6.)<1, R=RT>0}.
(3)
For a given control, u : IRy — IR, and a fixed ¢ € ©, the
LQR cost is defined to be

J(u,¢) 2 /°°° [ru(t)2 + y(t)z] dt. {4)

We assume that (A, b) is controllable (or at least stabiliz-
able) and (¢, A) is observable {or at least detectable) for
all ¢ in ©. The robust control design problem is to find a
control u : Ry — IR that solves the following minimax
problem:

min max J(u,¢). )
Since no particular form is assumed for the control u, such
as linear state-feedback, the minimization in (5) is over
all possible u’s. Note also that we chose the initial time
t = 0 for convenience only, the problem can be posed at
any initial time ¢ = tg. Therefore, one can design a new
controller each time © gets updated.

The cost objective in (4) and the ellipsoidal set in (3)
lead to another interesting interpretation for the minimax
problem in (5) once we rewrite (4) as

J{u,¢c) = /:o [ru()? + 27 (t)ccT z(t)] dt. (6)

Now, instead of saying that we are designing a controller
for a set of uncertain plants described by (1) through
(3), we can also say that we are designing a controller
for a set of uncertain objective functions. (This interpre-
tation contrasts with the standard LQR design where a
controller is obtained for fixed weighting matrices.) Note
that cTz(t) is a dot product, so it depends on the an-
gle between ¢ and z(¢). Geometrically, the sel © sweeps
out a “cone” (with a curved base) of possible ¢’s. Thus,
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we can interpret © as a set of “view angles” from which
we calculate the cost. The minunax control from (5) 1s
therefore robust to all these “view angles.” This interpre-
tation is interesting since in practice we seldom look at
performance from just one angle.

3 Minimax Solution

‘To solve the minimax problem in (5), recall from {6, pages
274-282] that (u”,c") is a saddle point if

J(u®,¢) < J(u", ") £ J(u,c") (7)
forallu: Ry — IR and ¢ € G. In that case, we have

(u*,c") = argmulnr&a.ex.l(u,c) = arg maxmin J(u,¢).
(8)
Qur goal in this section is to prove that there always exists
such (u®,c*) for (5).

From LQR contro! theory, the second inequality in (7)
is true if

u” = uzqr(c’), (9)

where urgr(c*) denotes the LQR control designed for the
plant in (1) with ¢ = ¢* in (2). It follows that the first
inequality in (7) is also true if

c* = arg mca.xJ (uggr(c’),c). (10)
Thus, if ¢* exists for (10), the minimax problem in (5) is
solved by (9). Note that the existence of ¢* is not obvious

because ¢* must have the property that when vzgr(c”)
is applied to each ¢ € O, the maximum cost occurs at ¢*.

We now express the LQR cost in (10) in a more con-
venient form. Since (A, b) is stabilizable and (¢, A) is
detectable for all c in O, for each ¢ € O there is an asso-
ciated state-feedback control uzgr(c) given by

urqr(c) = —Kez, (11)
where |
K. = ;bTPc (12)
and P, satisfies the algebraic Riccati equation
ATP. + P.A- %PcbbTPc+ccT =0. (13)

We will use X, to denote the solution of the associated
Lyapunov equation,
(A—bK)X.+ X(A-bK)T + zoxF =0, (1)

where

X, = / P(A"bK‘)'rorge(A"bK‘)r' dt. (19}
0




The LQR cost in (10) can now be expressed as
J(urqgr(c), ¢}
o0
= / {1‘uLQR(C')2 + yZ} dt
0

oo
/ [Y‘[{C-IIT KT + cszTc] dt
0

fe o)
/ rl(c-e(A*"(")'xuzg‘c(“"bk")r‘KZ: dt
0

(o]
+/ (TelA=bK o) 1T ((A=BK )Tt e gy
Q

= rK.X. KL +cTX.-c (16)

For a given ¢*, K. X.-KX% in (16) is fixed. Thus, the
maximization in (10) becomes

c* = arg mca.chXc-c. (17)
Note that the feedback gain K.. does not depend on the
initial condition zq, but the Lyapunov solution X.. does.
Therefore, the solution ¢* is a function of zy. However,
this dependence on zg can be removed if we start with
the assumption that z¢ is a random vector with known
mean m and covariance C and the objective in (4) is an
expectation over rq. In that case, X . is the solution of
(14) with zoz] replaced by C + mm7.

Our ultimate goal is to find ¢* in (17), but we must first
prove that such ¢* always exists. To do that, we define
the mapping f: €0 — €0,

&) = ¢
a

argmaxc? Xac, (18)
where X; satisfies the Lyapunov equation associated with
¢ as in (14). It was shown in {15] that the solution of (18)
is given by

é=TA 3 +6. €Oy, (19)
where

R = TATT (20)
;o= (Q-ADT'p (21)
A= ma.xz\([ _[‘;ﬂT ;{D (22)
Q0 = R 5x.r} (23)
B = -RrR%X.0, (24)
O = {6:(8-6.)TR(§-6.)=1} (25)

(©s is the boundary of ©.) Therefore, the mapping f con-
sists of two parts. First, it takes the given é and produces
X via equations (12) through (14). Then é is given by
(19).

To show that c* exists in (17) is equivalent to showing
that a fixed point ¢* exists for f, i.e.,

f(c)=1¢c". (26)

To do that, we need a lemma extracted from [11] and a
simple form of Brouwer’s Theorem (13, pages 366-367).

Lemma 1 If (A, b) 1s stabilizable, then over any region
where (¢, A) is detectable, the algebraic Riccatr equalion
solution P. in (13) 1s continuous in ccT .

Proof of Lemma 1
tional

Consider the matrix-valued func-

I
g(P,ccT) = ATP+ PA- ;PbbTP + ceT. (27)
For any ¢, P, satisfies (13), so g{P.,ccT) = 0. Asa
quadratic function in P and a linear function in ccT, the
functional ¢ is infinitely differentiable, and its derivative
with respect to P at the point (P, ccT) is the linear op-
erator given for any matrix Z by
Dg.(2)=(A-b8K)T Z+Z(A-bK.). (28)
Since K. is stabilizing, the operator Dg, is nonsingu-
lar by Lyapunov’s equation. Therefore, from the implicit
function theorem (see, ¢.g., 21, pages 375-380]), there ex-
ists an infinitely differentiable matrix-valued function ¥
such that

P. = ¥(ccT). (29)

Thus, P. is continuous in ec”. o

Theorem 2 (Brouwer’s Theorem) Let C be a com-
pact, convez subset of IR". Then any continuous function
f :C — C has at least one point c* such that f(c*) =c".

The existence of ¢* in (17) can now be guaranteed by
the following theorem.

Theorem 3 (Fixed Point) The mapping f defined in
(18) is continuous in ¢ and it has a fized point.

Proof of Theorem 3 First, we need to show that the
mapping from ¢ to X, is continuous.

1. Let ¢ = ¢ in (12) through (14). By Lemma |, P; of
(13) is continuous in €&7. Since each element of ¢&7
is simply a product of elements from &, &7 is contin-
uous in ¢. By the continuity of composite functions,
P: is continuous in €.

2. K¢ of (12) is continuous in Pg, thus it is continuous
in €.

3. By the implicit function theorem (similar to the proof
of Lemma 1), X, is continuous in K. By the con-
tinuity of composite functions, X is continuous in
c.
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Second, we need to show that the mapping from X; to é
is also continuous.

1. Both  and 8 in (23) and (24) are continuous in X,.
Since each eigenvalue of a matrix 1s continuous in
the elements of the matrix (see, e.g., {10, pages 191-
192]), A in (22) is continuous in Xe. Thus, by the
continuity of composite functions, A is continuous in
c.

2. Each element of (2 — AZ)~! is given by its cofactor
divided by det(Q—A1). The cofactors and det(2—AI)
are sums of products of elements of {2 M. Thus,
(2 = AI)"! is continuous in ¢, which implies Z in
(21) is continuous in € also. (Exception is when Q —
Al is singular, which is treated in [15]. However,
continuity is not affected.)

3. éin (19) is continuous in é.

Therefore, the mapping f from ¢ to ¢ is continuous, and
by Brouwer’s Theorem it has at least one fixed point. O

The existence of a saddle-point solution for the mini-
max problem in (5) is stated in the following theorem.

Theorem 4 (Existence) There ezists at least one
(u*,c*) suck that (7) is true and the minimaz problem
tn (5) has a saddle-point solution. If there are more than
one (u,c) which satisfy (7), then their associated LQR
costs must be equal and any one of the solutions is equally
valid. '

Proof of Theorem 4 From Theorem 3, we know that
(10) has at least one fixed point. Therefore, (7) has at
least one saddle-point solution. To show that two fixed
points of (10) must have the same LQR cost, assume that
there exist (uy,c1) and {(uz,c2) such that

J(ui, ¢) < J(uy,¢1) < J(w,c1), Vu,c (30)
and
J(u2,¢) < J(ua,c2) < J(u,e2), Vu,e. (31)
Then let ¢ = ¢2 and u = u; in (30), we get
J(u;,cz) < J(ul,cl) < J(ug,cl) < J(uz,c'g) (32)
or
J(ur, 1) < J(ug,¢q). (33)
Similarly, let ¢ = ¢y and ¥ = u; in (31), we get
J(uz,c1) < J(uz,c2) < J(wy,e2) < J(uy,c1)  (34)
or
J(uz,¢2) < J(uy, 1) (35)
Therefore, (33) and (35) imply
J(Ul,Cx) = J(UQ,CQ). (36)

@]

This section can be summarized as follows: a fixed-
point solution ¢* exists for (10) and the solution to the
minimax problem in (5) is given by (9). We now turn to
the computation of ¢*.

N =41

Figure 1: Candidate points used in calculating ¢4, and
ér41.

4 Fixed-Point Computation

Before describing our simple heuristic algorithm, we
should point out that there exist many algorithms to
compute Brouwer fixed points (see e.g., {1] and [24].)
Although these algorithms can guarantee that the fixed
points will be found, they are known to have combina-
torial complexity. In comparison, we have no guarantee
that our algorithm will converge, but in many cases that
we have tried, it usually converges in less than 10 itera-
tions.

The goal of the iterative algorithm below is to find &

such that the distance between & and é; = f(¢i), as de-
fined in (18), is small, i.e., a fixed point. Given &; and é&;
at the kth iteration, steps 6 through 8 below are designed
to find Gk 41 and éx4y. The algorithm accomplishes this by
doing a local minimization over a set of candidate points,
{pi, i = 1,...,N}. Let {p,-, i=1,...,N}be N -1
equally-spaced points between ¢ and &, with py = é&
(see Figure 1). Vectors are then drawn from 6. to each
pi, until they intersect O, at points {p;, t = 1,...,N},
where
i = yw+6. (37)
= 4/ L (38)
L wT Rw
Di — oc
W = e (39
i = BT ’
Next, we compute p; = f(p;) in step 7. After comparing

52




the distances {|p; — pill5, the p; and p; with the minimum
distance become ¢ 41 and éx 44, respectively.

A Heuristic Algorithm

1. Define the mapping f from ¢ to ¢:
compute X¢ in (18) using (13}, (12), and (14) then
compute ¢ using (19);

2. k—0
3. Let ¢; be a random point on Qy;
4. Compute é; = f(é,);
5 k—k+1;
6. Compute {p;, i == 1,..., N} on O, using (37);
7. Compute p; = f(p;) fori=1,...,N;
8. Compute
j = argmin|jp; - pill, (40)
then

Cryr = DPj (41)
k1 = Py (42)

9. If ||yt — Ek4rll, > ¢, g0 to step 5.

Note that there is no guarantee that [|ér — é)l, <
llée41 — €e41(l,, so we don’t have a convergence proof for
this algorithm. However, with ¢ = 0.001, this algorithm
usually converges in less than 10 iterations.

5 Example

We will use the two-mass-one-spring system described in
[4] in our example. This system, shown in Figure 2, can
be represented in state-space form as

£ 0 0 10 xl
0| 0 0 01 9
3] T |-, A& 0 0]z
iq £k g o] =
0
+ _(1)_ u (43)
0!
y=c'z (44)

where | and x5 are the positions of masses 1 and 2, and
z3 and z4 are the velocities of masses 1 and 2, respectively.
We use masses m; = my = | kg and spring coeflicient
& = 1 N/m for this system.

Iy T2

my ma

O k

SRR

Figure 2: ‘Two-mass-one-spring system.

The initial conditionis zo = [ 1 -1 0 0], which
means the masses are displaced toward each other. For
the ellipsoidal set in (3), we use 6. = [ 01 01 ]T
and R = I. Thus, the output y is nominally the sum of
the position and velocity of the second mass, but ¢ can
still be anywhere within the unit ball. We choose r = 1in
the objective and N = 4 in the fixed-point algorithm. For
the stopping criterion, ¢ = 0.001 is used. The algorithm
converges in 5 iterations.

Table 1 shows the cost matrix for this example, where
cLqQR is the element in © which maximizes the cost for
u = uLQr(f.). As expected, the control u = urgr(é,)
applied to ¢ = . gives the lowest cost for this control,
5.6, but its cost can be quite high at other ¢'s such as
cL@r and ¢*. In comparison, the control u = urqr(c*)
applied to ¢ = 0. gives a slightly higher cost (but this
may not be the lowest cost for this control as it is likely
that another ¢ achieves the minimum) while keeping the
maximum cost to 13.4, as compared to a maximumof 17.1
for u = urqr(6.). Therefore, this example illustrates that
by giving up some performance at the nominal plant 6.,
we gain some performance back for other plants in the
set.

| [c=0 [c=cgnle=c]
u= uLQR(Oc) 5.6 17.1 16.9
u= uLQR(C.) 7.3 13.3 13.4

Table 1: Cost matrix for different u’s and ¢’s.

6 Conclusion

We presented a controller design method for continuous-
time plants whose uncertain parameters in the output
matrix are known to lie in an ellipsoidat set. This de-
sign problem is posed as a minimax problem, where the
control and plant uncertainty can be viewed as strategies
employed by opposing players in a game, in which the
control is chosen to minimize the LQR cost and the plant
uncertainty i1s chosen to maximize it. Without restricting
the form of this minimax control, we proved that it is the
LQR control for one of the plants in the ellipsoidal <ot
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the worst-case plant. We then proved that this worst-case
plant always exists as a fixed point for a certain map-
ping. A simple heuristic algorithm for computing this
fixed point was also given.
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A Robust Control Design for FIR Plants with
Parameter Set Uncertainty

MinG K. Lau*t STEPHEN Boyp*

Abstract This paper proposes a method of computing
the finite-horizon control inputs for FIR plants whose pa-
rameters are only known to lie in a set. The parameter
set is assumed to be described by an ellipsoidal bound,
which could be provided by some identification scheme
with a parameter set estimator. The finite-horizon con-
trol obtained minimizes the maximum LQR cost from all
plants with parameters in the given set. The computation
of this robust control is shown to be a convex optimiza-
tion problem, thus global minimization is guaranteed and
many efficient methods are available to compute the min-
imizing control. In addition, the method can also be used
to compute the control for the dual problem in which the
plant parameters are known but the initial states of the
plant are assumed to lie in a set.

1 Introduction

A problem of great interest in control theory is the design
of a controller which can guarantee some level of perfor-
mance in the presence of plant parameter uncertainty.
Kharitonov’s theorem provides a necessary and sufficient
analysis test for determining the robust stability of poly-
nomials with perturbed coefficients, however, there are
few results that exploit Kharitonov’s theorem for synthe-
sizing robust controllers, e.g., {4] and [10]. Another ap-
proach to this problem is to define a set of nominal values
of the uncertain parameters and consider deviations from
these nominal values. A comprehensive survey of the dif-
ferent parameter space methods, as opposed to frequency
domain methods, can be found in [13].

Motivated by recent work from [11}, [12], and [1], where
the identified plant parameters are described by ellip-
soidal sets, we pose the following problem: given that
the plant parameters are known to lie in an ellipsoid, find
the finite-horizon control which minimizes the maximum
LQR cost from all plants with parameters in the given
set. At time k, this minimization produces the control
vector {u(k) u(k + 1) u(k 4 N)), but only u(k) is
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applied. At time k + 1, a new minimization problem is
solved. This approach of control application is the same
as the generalized predictive control described in {5] and

.

In this paper, we choose to work with finite impulse
response (FIR) models for the plant with the assumption
that they are accurate models provided they of sufficient
lengths. (In doing so, we have also assumed that the
plant is stable.) Our goals are to show that the above
minimization problem is a convex optimization problem
and to design an algorithm to compute the minimizing
control. In order to solve the minimization problem, a
constrained maximization problem must also be solved.
The procedures of which are given in the Appendix. We
will also show that the same algorithm can be used to
compute the control for the dual problem in which the
plant parameters are known but the initial states of the
plant are assumed to lie in a set. The paper is organized as
follows, after stating the problem in the next section, we
will show convexity in section 3 and outline the algorithm.
The dual problem of uncertain initial states is considered
in section 4. A numerical example is given in section 5.
Some concluding remarks are given in section 6.

2 Problem Statement

We shall consider a discrete FIR plant

y(k) = bu(k~1)+
07 $(k)
where y(k) and u(k) are the output and control of the
plant at time &, respectively, and

[ 6 b b "
[ u(k—1) u(k—2)

o Fbpu(k—m) (1)

8
(k)

The parameter vector of the plant, 8, is assumed to be in
a set,

il

It

u(k — m) ]T

80 2{0:(6-0.)7r(@0-0,) <1} ()

where I' = I'T > 0. Note that © describes an ellipsoid
in the parameter space with its center at 0.. The matrix
I' gives the size and orientation of the ellipsoid, i.e., the




square roots of the reciprocals of the eigenvalues of '
are the lengths of the semi-axes of the ellipsoid and the
eigenvectors of I' are the directions of the semi-axes.

The plant in (1) can also be represented in state space
format,

z(k+1) = Az(k) + bu(k) 3)
(k) = cz(k) (4)

where

0 0 0 0 1

1 0 0 0 0

A=10 1 0 0 , b= 0 ,

0 0 1 0 0
and

e=[by by -+ bm ]=6T

Thus, the states of the FIR plant are

z(k)=[ uw(k—1) u(k—2) u(k —m) |7 = ¢(k)

Due to past disturbances, the states at some time kg are
displaced to ¢(ko) = ¢o # 0, so y(ko) # 0. Without loss
of generality, we let kg = 0. We now define the control
and output vectors

v 2 [u0) u(l) u(2) u(N) |7
v £ [y w) w2 - wm ]
and the quadratic cost function
Jo = puTu+yTy (5)

where p is a weight to trade control effort for regulation.
The problem is to find a control which minimizes the cost
fuaction for the worst possible plant in 0O, i.e.,

u* = argmin (rgneaex Jo) (6)

Thus, u* is designed to be robust with respect to the
parameter set uncertainty given in (2). Note that if there
were no parameter uncertainty in the plant, § = 8., then
(6) becomes

uLQRr = arg rrLin Jo (N

which is the standard finite-horizon linear quadratic reg-
ulator problem. The optimal control in (7) requires the
solution of the discrete Riccati equation, which can be
found in texts such as [7, 2}.

3 Robust Control Design

We will solve the minimax problem of (6) by showing that
it is a convex optimization problem. Note that since uTu
is not a function of 8, we have

u® = arg rrLin [T (w) + J2(u)]

where
Ji(w) = puTu (8)
Jo(w) = !‘T\G%XVTU 9
We can express y as
y=U0
where
u(—1) u(—2) u(—m)
u(0) u(~1) u(-m+1)

U= u(1)

WN—=1) u(N-2) «(N —m)

We now state and prove the following corollary, which
states that the maximizer of (9) always lies on the bound-
ary of ©.

Corollary 1 Let ||||, denot: the Euclidean norm, i.e.

li=ll3 £ 7=
For a fixed matriz U,
£(8) = Udl
15 convezr in @ and
2 2
max |U6]l; = max |U6]; (10)
where
0, ={0:(6-0.)TT(6-0.) =1} (11)

Proof of Corollary 1 Let o € [0, 1], then

F(aby + (1 — a)8s) — af(01) — (1~ a) f(62)

MU (b + (1 - 0)82)[I3 — « |UB 13 — (1 — @) |UB,J2
~a(1 - o) [[U(8; - 65)|]2

0

IA I

Thus, f(6) is convex in 8. Now let 8, 8, € ©,, then
f(aby + (1~ a)b2) < af(61) + (1 - a)£(62)
Since the graph of f(6) along the line segment joining

any 6, and 0, lies on or below the line segment with its
ends at f(6,) and f(6,), (10) follows. (A different proof
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of the maximum occurring on the boundary can be found
in [14].) Q

Thus, the maximizer of (9) is given by

- — 2
6" = arg max |{U0]l, (12)
Theorem 1 The functional
J(u) = J1(u) + Ja2(u) (13)
1S conver tn u.
Proof of Theorem 1 We express y as
y= Bl(())u + Bg(8)¢, (14)
where
BRY 0 0 0 07
b 0 0 0 0
b b 0 0 0
By(6) =
bm bm—l bl 0 0
0 ) 0
L bm bm—l bl 0 ;
C by by bm-1 bm ]
b by -0 by 0
by .- by 0 0
- bm
B(0)=1 4, g o 0
0 o 0
0 0 - - 0 |
and r
$o = [ u(=1) u(-2) u(—m) |
Then
vy = ¢, B} Bado+ 247 B] Biu+uT B[ Biu  (15)

The first term on the right-hand side of (15) is constant
in u, the second term is linear in u, and the third term
uT BT Bju = ||Blu§|§ is convex in u by Corollary 1. Thus,
yTy is convex in u for each § € O. Since the maximum
of a set of convex functionals is also convex [3, page 131},
Ja(u) is convex. By Corollary 1, J;(u) = p[luﬂg is convex
also. Since the sum of convex functionals is convex 3,
page 131], J(u) is convex in u. 0

With Theorem 1, we are guaranteed that there is a
global minimum solution for u* and many efficient meth-
ods are available to compute it. However, we want to
point out that although Jo(u) is convex in u, it is not dif-
ferentiable for all u. We will illustrate this point with the

Figure 1: J and J, as functions of u.

following simple example. Consider the case where m = 2
and N = 1,50 6 = [by b2)7 and u = [u(0) «(1)]7. Since
¥(1) does not depend on u(1), we have u(1) = 0 and can
consider u = u(0). Let O be the set of points which lie
on the line segment from 8; = [0.5 —1)T to 8, =1 1]7,
and ¢, = [-1 1JT. As shown in Corollary 1, for a given
, the maximum of yTy must be at either endpoints of ©,

J2(u) = max (yTyI,;a, ] yTy|o=e,)

Figure 1 shows that for this example, there are two points
where Jy(u) is not differentiable. Also shown in Figure 1
is J(u) with its minimum at v* = —0.4.

Since J2(u) is not differentiable for all u, we choose net
to use the usual descent methods to find u*. Instead, we
will show that we can easily compute a subgradient of
J(u) and apply the ellipsoid algorithm described in {3,
pages 324-332}.

We first give the definition of a subgradient. If J :
RN — R is convex, but not necessarily differentiable,
then g € RV*! is a subgradient of J at u, if

J(u) > J(u,) + g7 (v — u,) for all u

The set of all subgradients of J at u, is denoted by
3J(u,), the subdifferential of J at u,. The following two
facts from (3, page 300] will be used.

1. Since Jy(u) and Jo(u) are convex, any subgradient of
the form g = g, + g, is in 3J(u), where g; € 3J1(u)
and gz € 8Ja(u).

2. Let yTy from (15) evaluated at * from (12) be de-
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noted by
J2(u,8°%) = ¢7 B3 (6")B2(6" )¢, + 28 BF (6°)B1(8")u
+uT BT (6*)B, (6" )u (16)

Since yTy is convex in u for each § € Oy, g2 €
0J2(u,0*) implies g9 € 3J2(u). In the event that
there are more than one maximum, we only need to
pick one.

Thus, from (8) and (16) the subgradient of J at u is given
by

9 = 2pu + [2BT(6")B3(8°)bo + 2BT(6°)B, (8" )u] (17)
The computation of §* is not difficult, but the deriva-
tion is rather long. To avoid breaking the flow of this sec-
tion, the method of finding 6* is given in the Appendix.

The ellipsoid algorithm for computing u* € IR¥ is as fol-
lows:

1. Select any u; and E; such that u* is in the initial
ellipsoid, :

u* € {u:(u—u)TE  (u—uy)}

2. k—0;
3 ke—Ek+1;
4. Compute any g € 8J(uz):

(a) Compute z* from Theorem 2;
(b) Compute ¢* from (31);
(c) Compute g; from (17);

5. Compute new ellipsoid:

- 9k
g v e
/9% Erge
Exg
kL
K? 2 .
Erya el (Ek - mEkgg Ek)

6. If /g Exgr > ¢, go to step 3.

The stopping criterion in step 6 guarantees that on exit,
J(uz) is within ¢ of J(u*).

4 Uncertain Initial States

In this section, we will consider the dual problem in which
the parameter vector @ of the plant is known, but the

initial states of the plant ¢, is assumed to be in a set
similar to (2),

$o € @2 {¢o: (¢ — ) Toldo — ) <1} (18)

The problem posed in (6) now becomnes

v = argmm;r:g.?ch, (19)

s T T
= argmin |pu’ u 4+ max
g [P éery !1]

Note that yTy from (15) is convex in ¢, for a given u. This
means that the maximum of yTy lies on the boundary of
@, ®;. Furthermore, using the same arguments from the
proof of Theorem 1,

I — T T
#(u) = pulu+ max yTy

can be shown to be convex in u. Therefore, all we need
to show is that we can compute a subgradient of J4(u),

9¢ = 2pu+ 2B Biu+ 2B] B¢, (20)
where
. __ T
4 =08 g iy
From (14), we have
¢, = arg Jfnax 1B2¢o + Byrull,

This is similar to the form of (12) except that we have
the extra term Bju. Thus, if we solve for §* with

q=— (BZQSC + Blu)

in (29) and replace T' and 6. of (2) with T'y and ¢. from
(18), we have

¢, =0
Therefore, u* in (19) can be computed by the same ellip-

soid algorithm given in Section 4, where the subgradient
is now computed using (20).

5 Numerical Example

For our example, we use a 10-tap FIR plant, i.e., m = 10.
The control vector u has N = 10, so if u = 0, the output
will be zero after 10 delays, y(10) = 0. The parameter
ellipsoid © in (2) is a 10-dimensional ball with a radius
of 5 and center at 6. 4., plotted in Figure 2 with the
‘+’ symbol, is the first ten terms of the impulse response
from the transfer function

10z(z 4 0.7 cos(7/4))
22 — 2(0.7) cos(n/4)z + 0.72

The initial state of the plant,

z(0) = [u(-1) u(--2)

u(~10)]7

58




20 ¥
.
t ; :
o
°

10} i e JSURU SRS SN TOR SV .
< x
3
§
é 5 F H e ~
: |
&

0 .

4
+ +
e i 3
.5 L3 f
<10
0 2 4 6 8 10 12
k

Figure 2: Plant parameters: o - 6,, x — #2, ¥ - 63, and
+-6..

is scaled such that [|z(0)}], = 1.

Using p = 1, we will compare the cost J in (13) as-
sociated with three controls, u; = 0, ua = uzqQr, and
uz = u*, where uzqpr is given by (7) with § = 8. The
controls uzQr and u* are plotted in Figure (3), where
llurqrll, = 2.63 and {|u*|], = 1.58. We now define three
plants from O,

A .
9. = argrgleag(.]o lu:u;) 1= 1’2I3

They are the worst-case plants for their associated con-
trols and are plotted in Figure 2. Table 1 shows the cost
matrix, C, for the different plants and controls. We make
the following observations from C:

1. Fori =1, 2, 3, C(i,1) is the largest in each row, as
the 6;’s are chosen that way.

2. uggr has the lowest cost for 6., 403, but only 8%
lower than u*.

3. u* has the lowest maximum cost, 697, 48% lower
than the maximum cost from uzqr and 87% lower
than that from u = 0. Thus, the robust design per-
formed as expected.

6 Concluding Remarks

We have shown in this paper that given that the FIR
plant parameters are known to lic in an ellipsoid, finding

2 v ~ -
%
1.5 .
1 F A
osf - -: : .
: L
3 OF . - ‘ ‘1 :L 2 PR "
2 : : ; .
.1 ‘ : ek
‘ :
15 R
:
2 ; ; H
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k

Figure 3: Controls: x — upgpr and * - u°.

L [ 6] 6] 6] 0]
uy =0 1306 | 902 | 1136 | 837
Uy = ULQR 587 1031 785 | 403
Uy = u* 655 | 632 | 697 | 437

Table 1: Cost matrix for different u’s and 8’s.

the finite-horizon control to minimize the maximum LQR
cost from all plants with parameters in the given set is
a convex optimization problem. An algorithm is given
to compute this minimizing control. Although the algo-
rithm can also compute the minimizing control when the
plant parameters are known but the initial states of the
plant are in an ellipsoid, it would be desirable to mini-
mize the maximum over both parameter and initial state
uncertainties simultaneously. Furthermore, we would like
to extend our method to the infinite-horizon case for in-
finite impulse response (IIR) plants. These are areas of
our current research.

7 Appendix

Given the following matrices,

U ¢ M{N+1)xm (21)
r e R, r=rTso (22)
6,0 ¢ R™ (23)

we want to find the maximizer 8° in (12). This is similar to the lcast
squares problem with quadratic and linear constraints, which was
investigated in {8] and [9]. However. we are secking a maximizer as
compared Lo a minimizer.
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Since I" is symmetric, we can diagonalize it by a unitary matrix,
[ = TATT

where A is diagonal with cigenvalues of [' and the columns of T are
cigenvectors of ['. We now transform Oy in (11) to the unit ball,

B={z:zTz=1} (24)
where 1
z=AITT(6-6,) (25)
Substituting
8=TA 3z+6. (26)
into {12), we have
z* = arg max ||Dz — q“g @7
T 2=t
where
D = UTA—: (28)
q = -US. (29)
Define
a & p™D
A
B = Dq
then
2* = arg max 270z - 2072 (30)
2T z=1

Substituting z* into (26), §° in (12) is given by
6* =TA~3z" 40, (31)
To find z* in (30), we introduce the Lagrange multiplier A and
adjoin the constraint, z7z = 1,
L=2:TQz Zﬁrz + A (1 ~2z72
Necessary conditions for the stationary points are

8_[,_ = 20z—-28-2Az=0
3z

8L r

—_— = - =0
E5Y 1—-2"z2
or
Nz = Az4p (32)
Tz = 1 (33)

The problem of finding all the stationary points of such a second-
degree polynomial on the unit sphere was first investigated in [6],
but the computation of the solution was not considered there. A

proof similar to the one given in {8], however, can be used to show
the following:

Corollary 2 If (z1,)1) and (z2,)2) satisfy (32) and (33) and
Az > Az, then
2Tz ~26T2; > 28 Q2p — 2872, (34)
Thus, in place of the maximization problem in {30), we need to
solve the Lagrange equations (32) and (33) with
X = mazimum (35)
In [9}, it was shown that (32) and (33) can be transformed to a
quadratic eigenvalue problem,

- X[)zn = ﬁBTv;

Furthermore, the quadratic eigenvalue problem can be reduced to
an ordinary eigenvalue problem by finding the eigenvalues of

= g 4]

The solution of (30) ts summarized in the following theorem:

Theorem 2 Let A* be the largest eigenvalue of M, then there are
two posaible cases for the marimizer of (30):

1. If X* is not an eigenvalue of Q, then z° = (¥ = A* 1)1,

2. If A* is an eigenvalue of Q, then let v = (2 — A* )0, where
t denotes the psevdoinverse, and

(e) If z = v satisfies (32) and (33), then 2° = v.

(3) If z= v satisfies (32) and vITv <1, then 2° = v 4 C is
one of many solutions, where ( s an cigenvector to the
eigenvaiue A* of §I with F¢=1-1Ty.

Proof u. i'heorem 2 In (9], the minimization of (30) was an-
alyzed. Due to Corollary 2, we can apply all the results from [9] by

replacing the smallest eigenvalue of M with the largest eigenvalue.
a
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Abstract Precise, finite-data statistical propereties are de-
termined using a least-squares estimator based on an output
error model with an affine parameter representation where the
true system is of output error form, but is not in the model set.
The purpose of the analysis is to show the effect of unmod-
eled dynamics on the resulting closed-loop system designed
on the basis of the estimated transfer function. This simple
problem set-up is prototypical of the interplay between system
identification and robust control design.

Introduction

The problem addressed is the following: given a finite col-
lection of sensed sampled input/output data from an unknown
system, what level of confidence can be assigned to a feedback
controller design or modification.

To make the problem both representative and analytically
tractable, the following a priori qualitative data is assumed:

(a1) The system which is generating the data is a discrete
linear-time-invariant system in output error form, i.e.,

ye = (Gu)e + e (1)

where t is the sampling time, u and y are the sensed
input and output sequences, respectively, and e is an un-
predictable output disturbance. The operator G is linear-
time-invariant with unknown transfer function G(z) and
corresponding impulse response sequence g. Thus,

(Gu)e = ngut—k (2)
k=1

{a2) G(z)is stable, i.e., all the poles of G(z) are strictly inside
the unit circle. Hence, there exist positive constants M >
i and p < 1 such that

lgx] € Mp*7, Yk > 1 3)
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(a3) The unpredictable sequence e is zero-mean gaussian i.i.d.
with unknown variance A..

(a4) The input sequence u is deterministic, hence, indepen-
dent of e.

It is important to emphasize that none of the parameters that
appear in the above assumptions are assumed to be known;
they are only known to exist. Hence, there is no guantitative
a priori knowledge about M, p, or A..

The above qualitative assumptions do, however, impose
varying degrees of restrictiveness. Assumption {al) impcses
an LTI structure, which by itself is not necessarily restrictive,
however, the output error form is very specific. This latter
restriction, together with the gaussian assumption (23) makes
the statistical analysis easier without resorting to a ceatral
limit theorem or a law of large numbers. Assumption (a4) im-
plies that the system is operating in open-loop, for otherwise
u would have 2 component which is correlated with e.

For control design it is desireable to obtain an estimate
of G(z). It is standard practice to form a parametric model
G(z,6) and estimate the free parameter 6. Although many
parametric forms are possible, e.g., {4}, for ease of analysis we
choose the following affine FIR paramtrization:

G(z,0) =) Oz (4)

Thus, the problem is to estimate the first n impulse response
coefficients {g1,'--,g9n}. Although we specialize to the FIR
modeling case, all the results apply mutadis mutandis to any
other affine model of G(z), ¢.g., Laguerre or Kautz models as
described in {5]. The essence of the problem addressed here
is, in our opinion, the motivation for the work described in
the recent special issue [6] on system identification for robust
control design. In comparison with [2], the smoothness pa-
rameters M, p are not estimated by modeling the tail of the
impulse response {gn41,¢gn+2,---} as a random variable. Our
attempt here is to precisely determine the effect of the un-
modeled dynamics, i.e., the tail of the impulse response, on a
least-squares paramecter estimator, without any further prior
assumptions.




Least-Squares Estimation

In this section we use least-squares on the measured data to
estimate the first n impulse response coefficients {g1,92,...} in
(2). Towards this end, the unknown impulse response param-

eters {g1,...,g.) are partitioned into the {finite) parameter
vector to be estimated,

/38
a=| : €R" (5)
gn

which consists of the first n impulse response coefficients, and
the (infinite) parameter vector

In41

g= 9"f= € R™ (6)

which is the remainder of the irapulse response. These param-
eters. — the “tail” of the impulse response, {gn41,9n42,...}
— can significantly bias the estimate of the “head,” namely,
{91,...,9n}. Statisticians refer to # as a “nuisance” parame-
ter. Note that because G is stable, ||B]] is not only finite, but
decreases exponentially as n increases. That is, using (3),

o0
M2p2n
et = > ok <55 @
k=n+1 P

Using the definition of o and B together with (1) gives,

Y=Xa+XB+E 8)
where

BT [

Y = eR™, E= eRY  (9)
|y~ | e~
[ uo e Ul —n T

X = e RV {.0)
| uv-1 UN_n |
[ u-n %opn-y

X = ; e RY**=  (11)
L UN-—-n=1 UNwn-2

Assuming that X’X € IR"*” is non-singular, i.e., u is persis-
tently exciting of order n, the least-squares estimate of « is
given by the well known formula:

g1
-~ B - -« _ 2 — ] —1 7
o= : = arg min Y - X6 =(X'X)" XY (12)

~

gn

where {gx |k =1:n) can be thought of as estimates of
{9« | k=1:n). We also take the estimate of A, the out-
put error variance, as the sample-variance,

3= %uv —xXa (13)

When # = 0, it is well known that & and A, are the maximum
likeihood estimates of a and A, respectively, e.g., {1]. In our

case, f # 4, and its cflect on the estimates is the subject of
the next section.

Statistical Analysis

In this section we analyze the effect of the nuisance pa-
rameter B on the estimates o and A, of o and X., respec-
tively. We use the standard notation A (x,X) to denote a
gaussian distribution with mean u and variance E. Like-
wise, x?(m) denotes a chi-squared distribution with m de-
grees of freedom. Recall that if ¢ € IR™ is drawn from
N(0,R) with R non-singular, then ¢'R™'q € x*(m). We
also usc x* (m, 1) to denote a non-central chi-squared distri-
bution with m degrees of freedom and non-centrality parame-
ter r. To fix the definiiion of the non-centrality parameter, if
¢ € R™ is drawn from N (u, R), then 'R~ g € x? (m, r) with
r = 'R 'u. From [3], we also use: as either’ m or r — oo,
x* (m, 1) ~ N (m + r,2{m + 27)). Hence, x* (m,0) = x*(m)
and as m — oo, x*(m) — N (m, 2m).

It is convenient to d-fine e “covariance® matrices,?

. = -lﬁx'x € R"*" (19)
Sz = -}x')? € R"** (15)
Lo = —lﬁi'i € me*> (15‘

Observe that only £;, can be formed from the data and by
assumption is invertible.

The following theorem describes the distributions of the key
raadom variables.

Theorem 1 Define the parameter error,
A=a—a (17)
and the oulput error,
E=Y-Xa (18)
Under assumptions (al)-(af),

(i) The parameter error a and the residual E are indepen-
dent and normaliy distributed as follows:

>4

€ N(E,‘,‘Enﬁ, %z:;,‘) (19)

(52

e N (r)?ﬂ, Ae - r) (20)
where I' € RY*¥ | given by,
C=In-XX'X)'X' (21)

has rank N — n and is idempotent, i.c., [ = I'?.

It can be shown that this result is also true if boch m or 7 — oo.

2l\lthough the matrices £y2, 22 are infinite dimensional, they
aiways appear multiplying 5. Hence, these terms are bounded be-
caunse the elements in 3 decay exponentially.
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) -’Y;:“ and %&'z,,a have the following non-central chi-
squared distribulions:

A;’\ € x° (N—n, Aﬁa) (22)
LETus € ¥ (m 1) (23)
where
v = B'TLEN Cnf (24)
§ = B'Taf~1=p(En- 12557 £12) B (25)

(iii) As N — oo,

Lo~ N8, 20 +2))  (28)
a'Sna — N("jv“ +7, %ﬂ (% +2~,)) (27

The results in part(i) follow directly from the underlying as-
sumptions and definitions of the variables, and except for the
non-zero bias terms, are standard, e.g., {1]. Part (ii) is non-
standard, in that the error statistics involve non-central chi-
square distributions. These results are obtained by direct ap-
peal to the relation between a normally distributed random
variable and the non-central chi-squred statistic as stated in
the introduction to this section. The asymptotic results in
part(iii) follow from the asymptotic normal 2pproximation to
a non-central chisquare distribution as stated in the introduc-
tion to this section.

In part (iii) of the theorem, the asymptotic variances decay
as 1/N. Hence, for sufficiently large N, the random variable

approaches the mean with high probability. This leads directly
to the following:

Approximation 1 For sufficiently large N, the following ap-
proximations hold with high probability,

Xe m Ac+6 (2R)
&"Ena =~ ‘%/\c + Y (29)

Observe that for large N, the variance estimate X tends to
over-estimate the true variance A.. In addition, the errors o
and A, — A, are driven by the “nuisence” parameter 8, i.e.,
the tail of the impulse response.

A special case of interest is when the input u is white, i.e.,

211 -‘—‘Au'ln; 212 =0, E22=’\u'lm (30)
Theorem 2 If u is white, i.e., (30) holds, then:
NX N
| e x(Non Tal) )
Ae Ae
N ~
vl it I S L)) (32)
} In addition, as N — oo,
. b 2.
\ L Y I 1] < CORTES W 17/ ) L)
|

The asymptotic part of the above *heorem leads to the Mllow-
ing:

Approximation 2 For sufficientlylarge N, if v is white, i.c.,
(30) holds, then with high probability:

A om Ao+ AP (34)
Gt < e (35)
Large N and High Probability
When the input is white, “large N” can be taken as,
N>> 2—((%'2)2—), n= él;l‘\l:ﬂ—“i (36)

where 5 is the ratio of the energy in the tail to the output
error energy. Typical values of N, e.g., 500-1000, will always
be well in excess of variations caused by n. Moreover, from
central and non-central -chi-square tables (e.g., {3]), values of
N > 100 and n > 20 make the normal approximations very
accurate. In consequence, “high probability” is i. excess of
99.95% for typical data lengths and model orders. Similar
numbers hold for the general case with a non-white input.

Frequency Response Estimation

The results of the previous section can be used to analyze
the errors in frequency response estimation. Towards this end,
express G(z), the true transfer function as,

G(z) = D(z)'« + D(z)'8 (37)
where
21 g—(n+1)
D(z) = , D)= | 27" (39)
z-n

Let a(z) denote the transfer function estimate of G(z) defined
as

G(z) = D(z) @ (39)
where & is the least-squares parameter estimate from (12) of
the the first n impulse response coefficients of G(z). Let A(z)
denote the transfer function error defined as,

Alz) = G(z)-G(z) (40)
= —D(z)a+ D(z)'8 (41)
where
D(z)a:=y (s —ax)z™, D(zYB= 3 gz (42)
k=1 k=n+1
with o the parameter error from (17).
From Theorem 1 the following result is obtained.

Theorem 3 The following vesults hold at cach frequency w:
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(1) Normal distribution

A(<) EN(F(e’“’)'B, %/in(cwyx;,‘ 1)(&“)) (43)
where _
F(z) = D(z)' = D(2)'E} Eaa (44)
(i) Non-central chi-squared distribution
A )
FD(ev) i D(e+)
with non-centrality parameter,

TACHY
F#D(e1) T D(e¥)

€ Xz (lvc(w)) (45)

e(w) = (46)

{iii) Asymptotic Normality
As N — o0,

a9
3t D(es*)* B3 D(e7v)

— N (1 + W), 2(1+ 2¢(w)))
(47)

Part (iii) leads to the following result.

Approximation 3 For sufficientlylarge N, the following ap-
prozimation holds with high probability at each frequency w:

A & 2D() TR D) + [FVBE (49)

Observe that if u is white (30) then

D) D) = D(e) (/\iu-ln) D(e™™)
i Jwye oy ™
= -;\-:D(e YD) = X

This leads to the following:

Theorem 4 If u is white, i.e., (80) holds, then at each fre-
quency w:

(t) Normal distribution

aEyen (Beys £35) (49
(ii} Non-central chi-squared distribution
Afe?? 2
‘-(é‘% € x* (1, e(w)) (50)
N X

with non-centrality parameter

DGy

(w) - -
N ae)

{tit) Asymptotic Nermality
As N — 0,

1ae))®

#17)

— N (14 (w), 2(1 4 2e(w))) (52)

Part (iit) together with Approximation 2 leads to:

Approximation 4 If u is white, ie., (30) holds, then for
sufficiently large N, the following approzimation holds with
high probability at each frequency w:

A = 35+ DY 81 (53)

Robust Control Analysis

In this section, we use the asymptotic {requency demain
bounds to evaluate controller robustness. The goal of control

is to reduce the output variance. Consider the LTI feedback
controller

u=-Ky (54)
where K stabilizes the “estimated” FIR system

y=§u+e, 5(:)229;@"" (55)

k=1

Applying the control (54) to the actual system (1) yields the
closed-loop system

y = TA e, u=— QA c (56)
1+Qa 1+QaA
where -
Fo- -1 _ g=-f_ (57)
1+ GK 14 GK

with A the estimation error as defined in (40). Since the
nominal system is stable, it follows that A, T', and Q are stable

transfer functions. Hence, the closed-loop system is stable if
and only if,

1+ Qe)A(e™) > 0, Vjw < = (58)

If this holds, then the spectrum of y, under closed-loop -not
during identtfication- is given by:

'f('c"“)
L+ Qer+)A(er)

dy(w) = (59)

Suppose that u, during identification, is white, t e., (30)
holds. To establish stability, observe that a suficient condition
for stability is that,

QPN 1T+ 1 V] - = (60)
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Using the expression for |A(e’”)] in Approximation 4 and sub-
stituting for A, from (34). it follows that for large N, the
closed-loop system is stable, with high probability, if,

Qe )? [ﬂ (j— - nﬂn’) + |T>(c’“)'m’] <1, Vil S
(s1)

Hence, using the large N approximations, with high probabil-
ity, the output spectrum is bounded as follows:

2y(w) < () (R - 2 1ol

The above bound gives an indication of the trade between
bias and variance as the model order varies - all results being
valid for data length N > 500 with probability in excess of
99.95

Concluding Remarks

Using an output error linear plant, we have shown that
with gaussian noise and affire models, there is a very rich
structure in the analysis of standard least-squares estimation

-~ -~ ~ 12\ ?
(112 [3# (& - 181 + 1Beeyer)
(62)
The only unknown quantity is §. From (34), we also know
with high probability that,

de % Ae ~ Au[IBIP

Since A, must be positive, it follows that
18I < X/ (63)

provides a worst-case upper bound. Observe that this bound
is known because A. is the computed variance estimate and
A, is selected by the user as the input variance. As a practical
matter, it is unlikely that g will achieve this bound. If it did,
then the noise variance A, = 0, which for large N, will almost
never occur.

Using (3), we get

|D(e”)' Bl = | Z gre K| <

I <
k=n+1} 1 °

Hence, for large N, the closed-loop system is stable with high
probability if,

2 2n
@™ [3“ Mo

M CETE

The constants M and p are unknown, so in order to evalu-
ate the above robustness condition, either we require a priori
knowledge or mfer the va.lues from the first n impulse response

coefficients @’ = (g1 - - - §n]. That is, define the estimates M, 7
Vla

] <1, Vjw|<x  (64)

[9cl < Mp*%, VE € [1,n] (65)
and replace M, p with IVI.E This leads to the robustness test:

A’Zzﬂ'zn

ey |32 y M7 ) Viwl < 6
[Q(e )‘ [N/\ +(1_a2]< ' l“"l..r (6)
Now, suppose that the closed-loop system is stable and the
above inequality holds. Then the spectrum of y is bounded,
with high probability, by: of y and u are given, respectively,

by:
T jw 2’;’
@) < IT()2 @y
(‘ —jQer) [ e o Am]
s A (1--p)?

of the first n impulse response coefficients. The remaining
coefficients bias the estimate in a precisely defined way in-
volving non-central chi-squared statistics. These appear to be
extremely useful in predicting model error for robust control
design from finite data records. Much still remains to be done
even for this restricted and analytically tractable case, partic-
ularly in finding a means to bound the effect of the bias (the
tail of the impulse response) without having to perform addi-
tional identification with ever larger parameter orders. This
ultimately may involve zdditional a priori quantitative knowl-
wdge. We feel that this paper indicates a first step towards
the more difficult problem of model structures which account
for non-white noise, e.g., ARX or ARMAX models.
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Worst-Case Control Design from Batch-Least-Squares Identification

ROBERT L. Kosut

Abstract A case study is presented to support the thesis
that high order models obtained from batch-least-squares pro-

vide all the necessary significant information for robust control
design.

1 Introduction

Suppose that the measured sampled-data set

{ye,ueft=1:N} (1)

has been obtained from an unknown system where u is
the scalar control input and y is the scalar sensed output.
Suppose further that it is known a priori that the system
which generated the data is stable, linear-time-invariant
(1ti), and operating in open-loop. Hence,

y=Gutv (2)

where G is an lti operator with unknown transfer function
G(z). The output disturbance v; is known to be a zero-
mean sequence with the unknown spectrum ®,(w). The
problem is to use the measured data set (1) together with
the a priori information to obtain estimates G(z) and
@, (w) which can be used for control design.

To see the control problem more clearly, suppose some-
how we have obtained estimates G(z) and & o(w). The
next step is to design a feedback controller. Let the con-
trol be

u=—-Ky 3)

where K is Iti with transfer function K(z). Typically the
controller K is designed for the estimated system

y=Gu+v, spectrum{v} = d,(w) (4)

The problem is that the estimated system differs from the
true system (2) and hence, predicted performance, based
on Lhe estimate, may not at all be like the performance
actualized when the controller is applied. If a bound on
the model error between the true and estimated systems

*The authors are with Integrated Systems, Inc., 3260 Jay Street,

Santa Clara, CA 95054.

Research supported by AF OSR/Directorate of Mathematical
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were known, then a robust controller could be designed.
Various approaches have been put forth to resolve this
problem, e.g., [3], but these involve forms of prior in-
formation and/or approximations which are either very
difficult to obtain or are too coarse. For control design,
the error needs to be well known near the desired band-
width of the closed-loop system, which may not be known
beforehand. Hence, prior information on the impulse re-
sponse, such as magnitude and rate of decay, is unlikely to
contribute significantly to a useable estimate of the error
near the desired bandwidth because the impulse response
bound provides only very low frequency and very high fre-
quency information. Ironically, any precise information
about the system dynamics near the desired bandwidth
is likely to preclude the need for identification.

In this paper we propose the thesis that high order
models obtained from batch-least-squares provide all the
necessary significant information for robust control de-
sign without invoking additional prior information. A

case study is presented which (of course) supnorts the
thests.

2 Batch-Least-Squares

Perhaps the most widely used procedure for obtaining the
estimates is via batch-least-squares where:

~ 2} 3. ,-1 .. T ,-n
G =2 = 2E LT
A(z) l1+a@z7i+-- 43,z
~ )
‘I)., = = 6
(w) VEDE (6)
o 1 N L2
3= 53 (A= Buy (7)

=1

where

ﬁ(z), B(z) = arg A(:r)‘ig(x)

1 N
7 2 Ay = Bu) (8)
=1

The number n will be referred to as the model order. (Ac-
tually the numerator and denominator orders need not
be the saune as shown here)) 1o every practical situation
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there is no finite value of n for which the right hand side

in (8) is zero. That is, the truc system is not tn the model
set ~ an axiom.

The great appeal of “least-squares,” and the principle
reason for its ubiquity, is that, provided the input is sufli-
ciently rich in spectral content, a unique minimum of (8)
is always obtained. Furthermore, there are very eflicient
and reliable methods for computing the solution, typically
involving square-root calculations such as the QR trans-
formation as well as lattice forms for very high model
orders. It is imperative that the calculations are done
in this manner, for otherwise significant numerical errors
will accrue, even for a small number of parameters. There
are other reasons as well for using 2 QR method, e.g., (1)
high model orders and large amounts of data are easily
handled, (2) data from different experiments are readily
combined without re-doing the entire estimation, and (3)
prediction errors can be computed for varying model or-
ders-directly from the QR transformation. These factors
make it possible to easily and rapidly generate extremely
high order models from large amounts of data. This fa-

cility in turn provides a great deal of information about
the true system,

3 Robust Control Design

Using the control (3) on the plant (2) yields the closed-
loop system

y = Ty
u = =Ty @
where I K
Tw=17¢r ' ™ =11GK (10)

To arrive at an expressio~ involving the estimates, let
e = Ay~ Bu (11)
denote the prediction error after identification. Using the

plant description (2) gives the equivalent expression for
£:

e = w+Au
w = Av (12)
A = AG-D

As a result the closed-loop system is equivalently:

y = Tyww (13)
u = —~Tuww
where
Ty T,
’I‘ym = et ~ ’ ’];nu = *""i;{— (14)
| B EAY M V4 AT

and

- i - HK ~ 1

Tpem e, Tue=—a— , == (15)
1+GK 1+ GK A

Since K is designed for the estimated system, it follows

that Ty, and F.,, are stable. Hence, K stabilizes the true

system if and only if (1 +ATu,)‘ is stable. Because both

T.“ and A are stable, K stabilizes the true systcm if and
only if

11+ A() e (@) £ 0, Viw| <= (16)

The well known condition for robust stability (1], and
sufficient for (16), is that the loop-gain be less than one,
i.c.,

[Tue(F)A(E) < 1, Vwl<x (17)

To verify either (16) or (17) requires some means of es-
timating A(e’“) or a bound on |A(e/“)]. In addition, to
predict closed-loop performance requires producing an es-
timate of ®,(w), the sprectrum of w as defined in (12).
Estimnates of both can be obtained using standard spec-
tral methods (Ch.6,[2]) as follows:

8(0)) =

K a’cu(“’)/$u(“’)
q’w (w) =

Bo() - [Beu@)?/Buw) OO

All the & variables are generated from the post-
identification data set:

{ec,us | t=1:N} (19)

It is important to mention that spectral estimation tech-
niques also introduce errors. How the spectral estimate
varies from the true is not known precisely although
asymptotic results are avaialble [2]. These are similar
to asymptotic results for estimating model error from
batch-least-squares. Unfortunately, precise conditions for
which the asymptotic results are good approximations are
not known without invoking additional prior information,
which we argue may not be obtainable in practice. For
this reason we procede heuristically, and simply utilize
the spectral estimates.

Based on these estimates, we obtain the following ap-
proximations to the closed-loop rms values

N 2 A
rms(y) = o= 7, lTyw(er)‘ Cu(w)dw
(20)
R 2
rms(u) = & [T Tw,(clw)‘ Dy (w)dw
where
’f‘uu' - —A"*I'";J;E"rti“_ . ,i‘uu' = Aéﬁi;_n (21)
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are estimates of the actual . closed-loop transfer functions
in (14). Following (17), Tyw and Ti, are stable if the
estimated loop-gain satisfies,

[Tue()A(E“) < 1, Viw|<w (22)
Since A(e?*) is an approximation to A(e’“), satisfaction
of (22) does not imply that (17) holds. Moreover, since
(17) is sufficient to insure (16), failure of (22) to hold does
not imply instability, but certainly merits some caution
at those frequencies where the test fails.

4 Case Study

Simulated System The computer simulated (true)
system is the mass-spring-damper mechanism shown in
figure 1, where u is the control force and d is an exoge-
nous disturbance force. The unknown disturbance d is a
zero-mean random sequence with variance (.001)?. The
user applies a zero-mean sequence with unit variauce as
the control input for identification. The data set is stored
for 1024 samples. The sampling frequency for both con-
trol and sensing is 10 hz.

Model Order Selection Batch-least-squares esti-
mates are computed using MATRIX x from the data set
{ye,ue |t = 1:512}, thus, N = 512in (1). The remaining
data set, {y¢,ue | t = 513 : 1024}, is used for validation.
Figure 2 shows the normalized rms values of the predition
error for model orders from 1 to 60 on both the identifi-
cation and validation data sets. Using the identification
data, the rms values continually decrease as the order in-
creases, which is to be expected because after a certain
point the model is fitting noise. This is verified using
the validation data (lower bar plot of figure 2) where the
rms values actual begin to slightly fncrease with increas-
ing model order. Thus, beyond the range from n = 10
to n = 20, no new information is really obtained in the
identification. Hence, the “optimal” model order from
this data set is in this range. This phenomena can also
be seen by examing the prediction error time series, shown
in figure 3 for model orders n = 4, 16, §0.

In figure 3, as the model order increases from 4 to
16, the variation (rms) of the error decreases. However,
increasing the order from 16 to 60 decreases the error
over the identification samples ( = 1 : 512), whereas
the error slightly increases over the validation samples
(t = 513 : 1024). To emphasize the effect of noise fitting,
we repeated the experiment with the shorter identifica-
tion set {y,u¢ | t = 1 : 256}. The results are shown in
figures 4-5. Now the rms of the prediction error using the
validation data increases more sharply for n > 12, and

the graph of e(t) for n = 60 shows a significantly smaller
variation over the identification samples t = 1 ; 256.

Control Design Based on the above results it seems
reasonable to select a design model with an order in the
range 10 < n < 20. For illustrative purposes here we
select three values n = 4,16,40. Figure 6 shows the
magnitude and phase of the frequency responses of the
true system G(e’*) and the three estimates G,.(el"') cor-
responding to n = 4,16,40. As suggested by the rms
plots in figure 2, the largest errors occur for n = 4, and
for n = 40, the estimates are “noisy.” Similarly, figure
7 shows the true spectrum ®,(w) and the three spectral
estimates :I;.,,,,(w) corresponding to n = 4,16, 40.

To evaluate the efficacy of the closed-loop rms appoxi-
mationsin (20), a set of LQG controllers were designed for
each of the plant models as follows. For each n = 4, 16, 40,
the observer was based on the model,

Zny = ﬁnu + e,

where ¢, is taken as a white noise with unit variance. The
regulator is then designed to minimize the expected value
of ¥ ro, (i + (pu.)?] for control weights p = 10,1, .1,.01.
Thus, we obtain the family of 12 controllers,

u=-—-K,,y

Figure 8 shows the predicted and actual performance
tradeoff between rms(y) and rms(u). Observe that for
n = 16,40, the predicted performance is very similar to
the actual performance, whereas for n = 4, the actual per-
formance is significantly better than the predicted. Recall
that n = 16 is considered to be an optimal choice based
on the cross validation plots in figure 2. Beyond n = 16,
no significant performance increases were observed.

The performance tradeofl of the different controllers
is not at all complete by just examining figure 8. This
does not show the robustness properties of the differ-
ent controllers. For n = 16, figure 9 shows the esti-
mated loop-gain lTu,(e"")A(e"")l and the actual loop-
gain [T (e7“)A(ef¥)] for two of the 12 LQG designs,
namely, for model order n = 16 with control weights
p = 1,.01. For the smaller weight, p = .01, there is
no robustness guarantee because the estimated loop gain
is greater than 1 at some high frequencies. However, the
actual loop gain remains less than 1 for all frequencies.
In addition, in every other case (not shown here), the es-

timated loop-gain was always larger (more conservative)
than the actual gain.
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System Identification for Robust Control Design

i ROBERT L. KosuTt *

Abstract Some recent results are summarized in parame-
ter set estimation for linear-time-invariant systems. The ex-
tension to nonlinear uncertain systems is explored and some
preliminary results are presented. Robust control design re-
quirements are also discussed.

1 Introduction

There are many ways to design or configure an adaptive con-
trol system. Figure 1 depicts the self-tuning-regulator (STR)
configuration [2]. Two feedback processes make it adaptive,
namely: (i) a2 model parameter estimator, and (ii) a control
design rule.

Model Parameters 8

! |

Control Parameter
Design | Estimator
0 4 '
r_: Control Lo Plant v
44

Figure 1: Self Tuning Regulator (STR).

The parameter estimator operates on the input-output data
obtained from measurements (y,u) of the plant system and
produces a model parameter estimate § € IRP. The param-
eter estimate is transformed by the control design rule into
a controller parameter p € IR%, which is then used in a pre-
determined parametric controller structure in feedback with
the actual system.

It is obviously very easy to construct an adaptive system:
Jjust connect a control design rule and an estimator together.
However, it is very difficult to insure that the resulting adap-
tive system will provide acceptable performance. This has
been the goal of research in this area for over 30 years.

Roughly, if the true system is in the model set which un-
derlies the parameter estimator, then the adaptive system will
asymptotically reduce the error signal for arbitrary bounded
exogenous inputs (r,d). Technically it is necessary that a a

*Senior Scientist, Integrated Systems Inc., 2500 Mission College
Bivd., Santa Clara, CA 95054; Consulting Professor, Information
Systems Lab, Stanford University.

tResearch support from AFOSR, Directorate of Math. & Inf.
Sciences, under Contract 1'49620-89-C-0119.

certain (closed-loop) transfer function is strictly-poitive-real
(SPR) [18,10,1), e.g. , H(s) is SPR if it is stable and satisfies,

Re[H (juw)] 2 0, Vo (1)

The main difficulty, to put it simply, is that the true system
is never in the model set - there are always dynamical phe-
nomena which remain unaccounted - and unfortunately, the
SPR condition fails to hold. Moreover, the theory based on
this property is sufficient and hence does not predict what will
happen if the SPR condition is violated.

Under sufficiently slow adaptation the method of averaging
can be applied to expose a mechanism for stability and in-
stability [1],{21},{2]. This theory replaces the above SPR con-
dition with a “signal dependent positivity condition” of the
form,

R= / Re[H(jw)]S(w) dw > 0 (2)

where S(w) > 0 is a spectral density matrix associated with
the exogenous inputs. This condition is much less restrictive
because even if H(jw) fails to satisfy the SPR condition (1)
at some frequencies, (2} can still hold provided the excitation
is concentrated at those frequencies where Re[H(jw)] > 0.
Moreover, if any eigenvalue of R is negative then the system
is unstable. In using the theory for design, the user must
select an appropriate combination of data filtering and excita-
tion spectrum. This task is similar to problems encountered
in system identification [17] except that here the system be-
ing identified is in closed-loop, which vastly complicates~the
selction process.

To see this more clearly, consider the function I'(4) defined
via Figure 2, i.e. , for every parameter choice 8 there is a
tesulting parameter estimate denoted by the function I'(6).

l_e r'(8)
4——l
Control Parameter
Design Estimator
!
" Control o™ Plant —V
L]

Figure 2: Illustration of the parameter map I'.

It is shown in [19] that under slow adaptation, convergence
points of the STR system in Figure 1 are precisely the fixed-
points of Moreover, the fixed-point is stable if (2) holds and is
unstable otherwise,
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In summary, the averaging result shows that stability of the
(ronlinear) adaptive system can be deduced {rom a frequency
domain condition (2) which mixes signals and systems. How-
ever, there are some difficulties in utilizing the theory. In the
first place, it is no trivial task to determine the fixed point(s)
of the map I, i.e. , those 8 € IRP satisfying 8 = I'(d). Sec-
ondly, both the transfer function H(s) and the spectrum S{(w)
depend in a complicated manner on the fixed-point and it
is unclear how to precisely manipulate data filters and input
spectrum to acheive either a satisfactory fixed-point and/or a
satsfactory transient response in the adaptive parameter tra-
jectory. To put it bluntly, the theory fails to produce a “user
{riendly” design method.

If we agree that the fundamantal difficulty in analyzing the
adaptive system is the ubiquitous model uncertainty, then one
alternate approach is to configure an adaptive control sys-
tem which specifically accounts for the uncertainty. One such
scheme, depicted in Figure 3, replaces the parameter estimator
in Figure 1 with an estimator that produces a model set or set
of uncertainty. This would avoid the major obstacle, namely,
that the true system is not in the model set used for identifi-
cation. This type of estimator is referred to as an uncertainty
estimator or a set estimator. This differs from the estimator
in the usual adaptive schemes (cf. Figure 1), where a single
estimated model is produced, with no information regarding
its accuracy.

Model Set
Robust Set
Design Estiraator
!
r .
Control — Plant |— ¥
44

Figure 3: Adaptive control with uncertainty estimation.

The second change is to use a robust control design rule, i.e. ,
one that accepts a model set in the form produced by the set
estimator. Under these conditions, if the true system which
generated the measured data is contained in the estimated
set, then the adaptive system is not only stable, but acheives
the maximum performance possible given the estimated set of
uncertainty.

Proceding in this way we have transformed the problem of
adaptive control design from analysis with trial-and-erzor into
separate synthesis problems in set estimation and robust con-
trol design. In effect this is a “separation principal® analogous
to that in the LQG design.

At present, methodologies for the design of set estimators
are under development, e.g. , (23], [12], (16], (13},{9].[14], [24].
On the other hand, there is a reasonable maturity of method-
ologies for robust control design, particularly for plants with
uncertain nonparametric linear dynamics, e.g. , [20], (25], (5,6],
[8], {22]. Robust control design of plants with parametric un-
certainty seems still underdeveloped despite some heroic ef-

forts, e.g. , sce [3,4] and the references therein.

Ii the remainder of the paper we principally address set
estimation for lincar and nonlinear systems. Section 2 pro-
vides a review of some recent results in linear set estimation
and some new results in nonlincar set estimation. Section 3
provides a brief section on linear robust control of plants with
both parametric and nonlinear uncertainty set descriptions.

2 Set Estimation

Set estimators should at least have the following features:

e Uncertain Parameters. A capability to account for that
part of the system which is known to be governed by
physical laws or able to be described by known func-
tions dependent on certain constant parameters. The
parameters may only be known to lie within some range
of variation.

¢ Uncertain Dynamics. Able to account for uncertain dy-
namics for which a parametric structure is not avail-
able or assumed, e.g. , neglected high frequency flexible
modes, uncertain memoryless nonlinearities, etc..

2.1 Linear Set Estimation
Counsider the linear-time-invariant model set:
G(O,W)={Ge(1+AaW):0€0, Al <1} (3)

The set G(O, W) describes both parametric and nonparamet-
ric uncertainty. The parametric uncertainty is reflected in the
set {Go : 8 € O} where Go is a parametric transfer function
with uncertain parameters 8 € © C IRP. The mapping § — G
is known but the exact parameter values are known only to be
in some set ©. The nonparametric uncertainty is reflected in
the set {A :|]Allc < 1}. Thus A is an uncertain linear-time-
invariant system only known to be stable and unity bounded
in the Hoo-norm, which for continuous time systems is defined
as [|Alle = sup,er {A(jw)| and for discrete time systems as
[[Alloo = sup,jcn 18(e’“)|. W is a stable transfer function
which reflects the size of the relative (or multiplicative) un-
certainty, i.e. ,

_ G =G
18l = [ g2l < 1

The above expression suggests interpreting the sct G(,W)
as a set of transfer functions “centered” at the parametric
transfer function G with a “radius of uncertainty” of GoW.

It is usually possible in a modeling process to arrive at an

initial parameter set O and a weighting transfer function W."

In the case when the prior set G(Oo, Wo) is too coarse to lead
to tolerable closed-loop performance levels, then a model set
estimator is required to refine the prior information by making
use of measured data. Specifically, we extract the following
result from [14].
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THFEOREM
Suppose that the the measured data set
{y,u:t=1,...,N}
is obtained from the sampled-data system

y = Gu

where G has the discrete-time transfer function
G(z). Furthermore, suppose that from prior in-
formation

G € G(©q,Wp)

and the parametric transfer function in (8) has
the structure:

Bo(z) _ bz '+ tbmz ™
Go(2) Ag(z)  14ayz7l+4.--4anz"
aT = {al...a" bl...b‘n]

Under these conditions, if G is initially at rest,
and is either stable or in a stabilizing feedback,
then:

G € G(Bo,Wo) N G(ON, W) (4)

where Oy is the parameter set estimate,
On ={0:||Aey ~ Boulln <||BeWoullx} (5)
with the N -point

Nzl = i, ()

The above result implies that if the true parametric transfer
function is Ga,,.., where 8iue € IR? is the true parameter
value, then

signal norm

ottue € 60 n GN

A good data set would insure that the new set estimate is
strictly inside the prior estimate, that is

© N BNC

Since both Ap and B¢ are affine functions of 4, it can be
shown [14] that ©x describes either an ellipsoid or an hyper-
boloid in IRP, depending on the data. Moreover, althcugh
the set ©p N Oy is not an ellipsoid, nonetheless a2 bounding
ellipsoid can be obtained.

A similar result is obtained in [24] for a co-prime factor non-
parametric uncertainty structure rather than the multiplica-
tive one used here. More on bounding ellipsoids can be found
in {7) who considered the problem of parameter set estimation
with bounded noise and no unmodeied dynamics.

2.2 Nonlinear Set Estimation

The preceding principals of set estimation for linear-time-
invariant systems can be applied to the set estimation of non-
lincar systems. We will illustrate the problems using the fol-
lowing three example systems: (i) an input nonlionearity, (it}
an output nonlincarity, and (iit) a mechanical system with
backlash.

Example 1: Input Nonlinearity

Consider the system shown in Figure 4 and described by:

v=Geti, @=f(u) (6)

- () * Gs

Figure 4: Input nonlinearity.

Make the following assumptions:

1. The function f(-) is 2 memoryless time-invariant non-
linearity known to lie in the sector

[f{u) — ku| < 8|,

where § < k and p > 0 are known constants.

Vlu| <o

4

2. Gy is a continuous-time linear-time-invariant system
with stable transfer function Gg(s) and where § € IR?
are uncertain parameters.

3. The measured data set is

{y(t),u(t) : t=1,...,N}
where the time ¢ is normalized to the sampling interval.

The constants (k,6, p) quantify the uncertainty in the non-
linear function f(-) in much the same way that W bounds
the uncertain linear-time-invariant nonparametric dynamics
in the previous section. A problem here, though, is that 4,
the input to the linear part of the system, is not a measured
variable. Moreover, the nonlinear function precludes describ-
ing any discrete-time transfer function from uinto y. However,
provided f(-) is sufficiently smooth, for fast sampling we have
the following sampled-data approximation

y~Goit, &= f(u) (8)

where now Ge(s) is approximated by the zero-order-hold z-
transform

Go(z) = (1 = 2™)2{5Ge(#))

This approximation is only valid at the sample times t €
{1,...,N}. For example, if f(-) is a polynomial or rational
{unction, then there certainly exists a (not necessarily small)
region Ju| < p such that (7) holds.

To illustrate the problems in obtaining a set estimator even
for the approximate system (8), suppose that (k,5,p) are
known, and we wish to estimate a parametric model for Gg(z).
For illustrative purposes, suppose that Gg(z) is in the two-

parameter set:
a
o= (3]

After some algebra one obtains the following equivalent in-
put/output description of (8):

Be(z) _ bz7!
Ae(z)  l4az-t’

Go(2) = ©)

Aoy — Bou = Bge (10)




where ¢(t) is an uncertain sequence satisfying

Lﬂﬂg%wmh Vi=1,...,N (11)

Since (k,$8,r) are known and u(t) is measured, the upper
bound on the error sequence is known at each time instant.
Combining the above expressions with prior information 6 €
©g, we obtain the parameter set estimate

Oy N Oy

where Oy consist of those 6 satisfying,
, A
Ivie) + ay(t — 1) —bu(t — 1)i < glouii= Ol (12)

forallt=1,...,N.

Example 2: Qutput Nonlinearity

In the above example, the nonlinearity was on the input. Now
consider the case where the nonlinearity is on the output (see
Figure 5) where

v=1(5), 9=Gou (13)
u g y
—{ Gy » () —
Figure 5: Input nonlinearity.
Proceding as before we now have,
Asy — Bou = Age (14)

where now e(t) is an uncertain sequence satisfying

)
le()] < ——=|y(?)], ¥i=1,...,N

T3 (15)

In this case the set estimate Oy consists of those @ satisfying,

l9(6) +ay(t=1)—bu(t—1)| < o (Iy(D)] +lay(t = 1)), (16)

forallt=1,...,N.

Example 3: Mechanical System

Consider the mechanical configuration depicted in Figure 6.

This system represents the case where tortional actuation is
applied to a load through a flexible gear-train. The gearing
is shown to occur at the end of the flexible member, although
other combinations are certainly possible.

Neglecting any electronic dynamics, and assuming that the
flexible rod is both uniform and damped, the motion of the

LITCANY
d J\q‘f\ et
N %, . {3k
ﬁov\\( -3 Ledd ._<‘_
Y .
e load — \53
e T e

Figure 6: A flexible rotating system with backlush in the
gear-train.

rigid body and first tortional *mode” for small angular de-
flections can be approxi nated by the system of differential
equations,

Juiin v+ D52 =)+ K(yza — )
Joia = ~ti—D(ya—u)—K(vza—w)
Jiygs = Na

§ = y2—~Nus

@ = f(g)

where u denotes the input applied torque, {y1, y2,ys) are an-
gular deflections as indicated in the figure, § is the relaiive
gear angle, and f(-) is 2 memoryless nonlinearity arising from
backiash in the gear train. The constants are defined as fol-
lows: Jae, Jo, and J are the motor, motor gear, and load
inertias, respec .vely, N is the gear ratio which is greator than
one, and I, K are the dampi:..g and stiffness, respectively, of
the elastic rod. The backlash nonlinearity f(-) has the typical
shape as shown in Figure 7.

A z\ L ARTC AT
sudiee

.

Figure 7: A typical backlash function.

The break-point parameter ys relates to gear tecth spacing
and the slopes in the two regions relate to gear teeth shapes.
Typically for |z| > ys the slope is very large whereas for |z{ <
ye the slope is very smali. It is clear that for some positive
constants (k, §, p) that f(-) satisfies the sector condition (7).

To illustrate how to compute a set estimate for the paran:-
eters of the mechanical system, suppose that the measured

variables are

and that (K, D) are uncertain parameters, f.c. ,
¢
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Observe that the input to the nonlinear function is

__JL.

u= Wy:
Onec appruach to describing a model set for this type of system
is to approximati> either the input or output to the nonline -
function. This would. be like the ideal situations in the pre-
ceding two example systems. In this case, since y3 is available
as a measurement, the acceleration ya can be approximated
by high pass filtering the measured output y3. For example,
let

o~ s \?
ys = Fya, F(s) = (ar + 1)

where 1/7 is sufficiently large so as to capture the dominant
harmonics in the accelera‘ion. Then,

With this approximation the situation is very similar to the
example wuere the nonlinearity is on the output. However,
there is one difference: here the input to the nonlinear function
also contains a term do to #%, which can also be approximated
by 4. Thus, the appropriate model can be described by the
feedback system shown in Figure 8.

z

—_—]
Go y

Figure 8: Feedback nonlinearity.

o

Q)

v
‘V

The system is described by,

After some algebri, we obtain,

i+ Jgu

y=y = Ao

+ 91— Nys

where
Ag(s) = JMJGJ2 +(Jm + JG)(D.! + K)

The procedure described in Example 1 can now be applied to
obtain a set estimate which will contain the true parameters.
OI course the precise conditions under which the true parame-
ters are in the set estimate involv~ various approximations. In
particular, due consideration must be given to approximating
@ by @.

2.2 Standard Model Structure

Even though the three example systems are fairly general,
it is also important to point out that they do not exhaust
all the myriad possibilities. A very general model format, or
template, is characterized in Figure 9.

This model form is diseussed in detail in [15]. Here we make
the following assnmptions:

—— Y

Po

-
<

fe)

Figure 9: Standard model

1. Py is a transfer matrix which depends on a parameter
@ € IR® and which has the block structure:

vyl Py ©
] Py, @
2. f(-) is a scalar memoryless nonlinearity in the sector,

az < f(z) < Bz,

where 0 < a < 8.

Py,

Pas (18)

Viz|<p

3. The measured data set is

{v(t),u(t) : t=1,...,N}

The standard form allows for scalar memoryless sector
bounded nonlinearties, but the measured signals (y, u) can be
vectors. Disturbances as well as nonparametric dynamic un-
certainties can also be included by replacing the “feedback”
with a more complicated system and by adding another input.

3 Robust Linear Control Desigi

As an illustrative example, consider the uncertain nonlinear
plant with a linear feedback control,

y=d+f(.'=7), g:Gauy uz_Ky (19)

whe 2 Gg and K are linear-time-invariant systems, K is the
linear feedback controller, f(-) is a memoryless nonlinearity,
; is the measured output to be controlled, and d is a dis-
tarbance as scen at the output. The control objective is to
atienuate the effect of the disturbance at the output Jespite
the unce-tainties in the system model. Specifically, the system
uncertainties are as follows:

¢ the nonlinear function f(-) is in the sector,

If(#) — vl <8lgl, Vigl<ep

o the parameters in the linear-time-invariant system Ge
arc in the set Q. :

Observe that these uncertainty sets can arise from a combi-
nation cf set estimaiior and/or prior infarmation. From the
control design viewpcint the source of the vnecertainty 1s not
selavent,
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To analyze this systemm we make the following convenient
defintions:

Alg) = f(§) -y
Se = (14 GeK)}
To = GeK(14+GoK) ' =1-5

Observe that A(:) satisfies the sector condition
[A(9)] < 8191,

The transfer functions (So,Ta) are the closed-loop transfer
functions from disturbance d to output y and control u, re-
spectively, if the nonlinear function f(-) is replaced by the
identity operator, which in this case is the “nominal” non-
linearity. The nonlinear feedback system is then equivalently
expressed as:

Vigl<p

y = Se(d+e)
e = Ay)
§ ~To(d +¢)

Now, let T4(t) denote the impulse response of Ts(s), and sup-
pose that there are consiants M > 1, ¢ > 0, and r > 0,
independent of 8, such that for all ¢ > 0,

To(t)) < Me™
[(Ted)(t)] < r

Application of the Bellman inequality [11] yields:

br
e < 3777 53 /a

provided that

a
§ < ‘H

r < (1—6M/a)p

The above inequalities bound e(t), which appears as an addi-
tional disturbance. Thus, the ideal closed-loop transfer func-
tions (Se, Te) must be shaped to make £(¢) small. In addition,
the linear controller K has other goals e.g. ,to robustly stabi-
lize the linear-time-invariant model set {Ge : 6 € é}

4 Concluding Remarks

A separation principal between model set estimation and ro-
bust control design allows for a more comprehensible approach
to adaptive control design. This approach differs from its pie-
decessors in that model uncertainty is incorporated in the syn-
thesis phase of the design rather than in the anlysis phase.
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A Family of Norms For System Identification Problems

Mohammad-Ali Massoumnia*!
Robert L. Kosut!

Abstract
In this paper we introduce a family of norms that may prove useful in system identification
problems. The important property of the new norm is that for a given sequence its value in the
limit will converge to the supremum over all frequencies of the spectrum of the sequence. Using
this property, a procedure is outlined to approximately minimize the weighted Lo, norm of the
frequency response estimation error.

1 Introduction

The parametric approach to system identification is based on selecting an appropriate model structure
and a search for the parameters of the model that best describes the data. Usually, the best model
within the model set is characterized as the one that minimizes a selected norm of the prediction
errors. By far the most popular norm is the sum of the square of the prediction errors— the quadratic
norm. In this paper we introduce a new family of norms that seem to be useful in system identification
problems. The new norms have an interesting interpretation in the frequency domain and include the
usual quadratic norm as a special case. The important property of the new norm is that in the limit
its minimization is equivalent to minimizing the supremum over all frequencies of the spectrum of the
prediction error, or equivalently minimizing its Lo, norm.

2 Definitions and Preliminaries

Let us assume we are given a scalar bounded sequence {e;, i = 1,..., N} which in our application
represents the prediction errors computed from the observed data and a guessed model parameter
vector 8. Based on this sequence, form the (N + M — 1) x M matrix

e 0 cen 0 i
ey e cen 0
1 | em ema e
M= (1)
€N €N-1 """ eN_M41
0 EN  t EN-M42
\ | 0 0o ... en |
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Info. Sciences Grant No. F49620-89-C-0119.

'Research Scientist, Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054
'Manager, Basic rescarch group, Integrated Systems Inc.
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where we assume 1 < M < N. Note that Enar is constant along the diagonals, and for A = 1, K,
is a column vector with c;/\/ﬁ as its elements. To simplify the notation we denote this vector by Fp.
Moreover, the matrix Kpar is completely specified when En(= Fny) and the value of M are given.

It is simple to sce that the matrix E}IV'MENM is symmetric, at least positive semi-definite, and
Toceplitz. The elements of this matrix are estimates of the autocorrelation function of the sequence ¢,
More explicitly, define the sequence a; (1 = 0,...,M — 1)} in terms of ¢, as follows:

N
1 N R
Q; = N €3¢ 48 (2)
=1
Then a simple computation shows:
ag ay o ApM i
T _ a) ap .oamM-2 .
EnmENM = _ (3)
aM-1 amM-2 - ao

Using these definitions, we define the new norm as the maximum eigenvalue of E,T,M Epnpr,
Vm(En) = A (E};MENM) =3*(Enm) (4)

where A(F) denotes the maximum eigenvalue of F and G(F) denotes the maximum singular value
of F. For simplicity, we usually delete the argument of Vs and assume it is understood to be a
function of En which is itself formed from the prediction errors e;. Note that Vyy defined in (4) is not
mathematically a norm on R¥; however /Vy(En) is a valid norm for Ex, and only to simplify the
presentation we refer to Vs as a norm.

Also, for M = 1, Vs is identified with the usual quadratic norm. From another point of view,
Vi only includes an estimate of the autocorrelation function of the prediction error for zero shift, ap.
Moreover, Vs is nicely bounded by Vi as follows:

HENZ = Vi(EN) < Var(En) < MV(EN) = M| EN|]2 (5)

To illustarte some of the properties of Vs for M > 1, assume M = 2. The maximum cigenvalue
of E;{,?ENQ is simple to compute and is given by

Vz = ag + ]all (6)

In this case, not only the sum of square of prediction errors is included in the performance measure,
but this norm also includes an estimate of the autocorrelation function of the prediction error at the
first time shift. Therefore, minimizing V, will force |a;| to small values. This is a first attempt to
whitening the prediction error in addition to minimizing ils variance .

Note that the whiteness of the prediction error is an important factor in validating a computed
model [5]. However, this desirablc property of the prediction error is not reflected in any form in the
usual quadratic norm. But Vs not only is a function of the variance of the prediction error but it also
is a function of the values of the autocorrelation of the prediction error for time shifts up to M — 1,
and by increasing M more and more of the temporal behavior of this autocorrelation affects V.
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3 Frequency Domain Properties

Now we discuss the frequency domain interpretation of the new norm. First assume the limit of a;
defined in (2) as N goes to infinity exists:

A}l_r}loo a; = a; (7)
If, in addition, @; is in {;, then the spectrum of the prediction error is
. - |
See(w) = Z apeIvk A .- (8)
k=-00 )

where we set @_; = @ because we are dealing with a real sequence. It is shown in [3] that the following
are true

1 "
% = 5 [ Se(w)ds 9)
AMCum) < sup See(w) = lim X(Cum) (10)
jwi<x M—rco
MCuMm) = ‘:)?sfwsec(“’) = A}lglooz\.(CM) (11)

where A(F) and A(F) denote respectively the smallest and the largest eigenvalue of F, and the Toeplitz
matrix Cpy is defined as follows:

g a; - dpma
a a RV
CM — 1 0 M2 (12)
apf-y ap-2 -+ Qo

To explore the convergence property of (10) as M goes to infinity, let us consider an exponentially
correlated sequence e; with autocorrelation function given-by

G=m 0<r<1 (13)
The spectrum of ¢; is simple to compute and is given by
Seel) = i1 (14)
T 1 — 2rcosw + 12

Let us denote the supremum of S.{w) by S. In Figure 1 the values of 100(S — X(Cas))/S are shown as
a function of M for values of r from 0.1 10 0.9. As can be seen, for small values of r (slightly correlated
sequences) the convergence is rather fast. However, as r gets closer to one the number M for achieving
a preset accuracy increases considerably. This figure is very useful in selecting an appropriate value
for M when a bound for the spectral content of the prediction error is known. Moreover, explicit

computation shows that for @ given in (13) the convergence of A(Cps) to inf, S..(w) is considerably
faster than those observed in Figure 1.

Theorem 1 The following limits hold

im ETEn = /
Nh_[}loENEN = %/ See(w)dw (15)
. lim (lim 3*(Enxm)) = sup Se(w) (16)
M-—o00 N-+oo fw|<x
. . 2/ 1 . .
Jim (lim ¢*(Ennm)) = I‘L?Sercc(w) (17)

where we assume that N goes to infinity faster than M.
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Figure 1: Convergence of A(Car) to sup,, See

Proof: Relation (15) follows from the definition of @ and (9). Morcover, by definition of Cas we have
lim EXpEnm =Cum (18)
N—oo

Substituting this in (10) and (11) and noting that the eigenvalues of 2 matrix are continous functions
of the elements of the matrix the other results follow immediately.

@]

In identification problems we estimate the model parameters # by minimizing Vp(En(8)). The
notation En(f) emphasizes the fact that the prediction error is a function of § and the minimization
is carried over elements of 6. Relation (16) is very illuminating in this respect and shows that by
minimizing Var as M approaches infinity, the supremum over all frequencies of the spectrum of pre-
diction error is minimized. Because of this property, we refer to the identification problem using the
new norm as the L, identification problem. In contrast, by minimizing the usual quadratic norm,
the integral of the spectrum of prediction error over all frequencies is minimized (5], and this can be
referred to as £, identification problem (see (15)).

As an aside, using (16) and (17), it is clear that the condition number of Enp ts a good indication
of the whiteness of the sequence Exn. When this condition number is close to 1, the spectral density
function is close to being constant over all frequencies and the sequence is close to being uncorrelated.
Large values of the condition number indicate that the sequence is correlated and the maximum and
minimum value of the spectral density are far apart.

Now we explore the usefuliness of the new norm in identification problems and relate the £, norm
of the spectrum of the prediction error to L, norm of the transfer function estimation error. Following
the procedure used in (5], let us assume the true system output is generated by

Yo = Go(gq)ue + v (19)

L]
where the additive noise v, has the spectrum

Suwu(w) = Aol Ho(e™)[? (20)
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with Ho{oo) = 1. Also assume the suggested model for the system has the form

ye = G(q,0)u, + 1(q,0)e, (21)

where @ is the vector of unknown parameters. It is simple to show that the spectrum of the prediction
error in this case is given by [5]: :

lé(ejw’ B)IQSuu(w) + Suu(w)

Sce(w, 8) = III(Cjw, 0)|2 . (22)

where G = G — Gy is the error in estimating the transfer function.
Unfortunately, the term S,,/|H|? in (22) which depends on the parameter 8 prevents us from

directly relating the minimization of Se. to the minimization of |G|. To circumvent this difficulty, we
can first use a high order ARX model

A(Q)y: = B(Q)u: + e (23)

to approximate Ho(e’*) by 1/A(e’*), and filter both u, and y; by A(g). Let us denote the filtered
input and output by u{ and y{ respectively. Next use the following output error model to estimate
the model parameters 6

vl = G(q,0)ul +e (24)
Now using (22) we have

See(w,8) = |G(e, O)7| A(e™ ) Suu(w) + | A(e™)* Sun(w) (25)

If 1/|A] is 2 good approximation to |Hp|, then the last term in (25) is a constant equal to Ag, and we
can write

G, )P A7) Suu(w) = See(w,8) — do (26)
Using (26), it is clear that minimizing the supremum of S.. in this case will directly lead to the
minimization of the weighted L., norm of G. Note that as is expected, the weighting |A]*S.. (=
Suu/|Hol?) puts more emphasis on the frequency ranges where the signal to noise spectral ratio is
large. Also, by repeating the experiment with a different input (changing Sy, ), we have the flexibility
of changing this weighting factor.

However, the approach we have outlined has a major draw back because it relies on using the
output error form in (24). The norm of the prediction error in this case is not necessarily a convex
function of the model parameters, and this may lead to a complicated minimization problem.

Note that after minimizing Vjs (for sufficiently large value of M), we can compute a good estimate
for the supremum over all frequencies of the left hand side of (26). Since the supremum over all
frequencies of the first term on the right hand side of (26) can be approximated by the minimum value
of Vs, and the value of Ap (variance of the noise) can be approximated when we are computing the
ARX structure in (23). This gives a bound for the L, norm of the modeling error.

4 Convergence and Convexity

The norm introduced in’(4) has some interesting properties that we shall discuss next. Let us fix
M, and assume we are given a model structure and identify the parameter vector 6 of this model
by minimizing Vp(En(#)) where P is a positive integer less than M (P < M). Let us assume
this optimization problem has a unique global minimum that we will denote by 67, and denote

the prediction error sequence resulting from this choice of the parameter vector by Eﬁ = En(6°).
Similarly define 0M and EY = En(8M).
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Theorem 2 The following series of incqualitics hold:

Vi(ER) < Vp(EN) < Vig(EN) < Vm(EN (27)

Proof: Beginning from the left hand side, the first inequality follows from the fact that the elements
of E,’G are generated from the model parameters that minimize Vp. The second inequality follows
from the interlacing property of the cigenvalues of a symmctric matrix [2]. Note that (L'N',,)”['N,, 1s
the first P x P principle minor of (EMy )T EM,, where ENP and EpN,, are defined in terms of E¥
using (1). The third inequality follows from the fact that £} is formed from model parameters that
minimize V. '

a

The relation given in (27) is specially usefull if we set P = 1. Then V;(E}) is the minimum
value of the usual least squares performance measure. Also in this case we can add another important
inequality to the set given in (27).

Corollary 1 The following series of inequalities hold

VI(EN) < VI(EN) < VM(EN) < Va(EN) <
Vi(EN) + (M - 1) max(|a}l, ..., la}s_11) (28)

where a! are computed from the elements of E}; using the relation given in (2).

Proof: The first three inequalities follow by setting P = 1 in (27). Morcover, because Q@ =
(ENam)TEN is Toeplitz with a} on its main diagonal, each eigenvalue of Q denoted by A satisfies the
following inequality

|A =~ agl < (M ~ 1ymax(ja;],- .., laps ) (29)

This follows from Gershgorin’s circle theorem [2] and hence the last inequality in (28) holds. Note
that the a! in (28) are estimates of the autocorrelation function of the prediction error computed from
parameters that are obtained by minimizing the quadratic norm.

0

Now let us assume that for a particular problem Vij(En(#)) and Vp(En(6)) both have unique
global minimum that are denoted by 6! and 6 respectively. Moreover, let us assume that in this
problem, the last term in (28) goes to zero as the number of data points increases. In other words
assume for a fixed M we have

lim max(la“»"*ala}kf—-ll) =0 (30)
N—oo
Then using (28), it is clear that
lim Vi(En(8')) = lim Vi(En(8)) (31)
N—o N—oco

Now using the assumption on the uniqueness of the global minimum of Vi, it is clear that in the
limit 8' and @M will be identical. Put it more loosely, if the prediction error for the quadratic norm
minimization is white, then the parameters obtained by minimizing the new norm will be identical to
those obtained by minimizing the usual quadratic norm.

To guarantee that each V; and Vjs have global minima only, let us choose an ARX model for the
structure of the system. In this case it is well known that the scaled prediction error can be written
as

En = f‘ (Y - 30) (32)
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where @ is the matrix of regression vectors and Y is the vector of output values {5]. In this case,
V1(En(8)) is a convex function of 8, and the minimization problem has only global minima. Moreover,
if @ is full column rank, then the minimum is unique.

Next we show that for an ARX model structure, Vg is also a conver function of the paramcters.
To see this, note that the matrix Enar can be written as

M M

1 T
Enm = TEnw] = ==Y T(Y — $6)v] (33)
=1 \/—ﬁ =1

where w; '€ RM is the standard basis column vector with 1 in its i-th entry and all other elements
zero. Also the (N + M — 1) x N matrix T; is defined as follows:

Oi-1)xN
T; = Ingn (34)
OM-iyxN

Moreover, denote the i-th column of ¢ by ¢; and the i-th element of ¢ € RL by 6;. Then (33) can be
rewritten as

L .
Exym = Co+ZCj0j (35)
i=1
1 ¥ T
Co -z —-—\/___—&—ZT,Yw‘
1 M -
C; = “‘J—ﬁZﬁ¢jwi

Note that Cj, j = 0,..., L, have the same special structure as Enps namely being constant along the
diagonals. Now using (35), it is clear that Enas is affine in 8, and G(Enps) is a convex function of
6. Therefore, V) being the square of G(Enas) is also a convex function of 8 and the minimization
problem has only global minima in this case.

Using these facts, if we use an ARX model structure and if it happens that the resulting prediction
errors are white (and consequently the relation {30) holds), then we are guaranteed that the parameter
estimate using the new norm will be same as the parameters using the quadratic norm. This is
promising because for the sum square norm and ARX structure there are many established properties
[5] that readily extend to the new norm.

However, if the prediction error sequence is not white, which will be the case if the ‘true’ model
does not have an ARX structure, then the estimate given by minimizing Vs will usually be different
from those obtained from the quadratic norm minimization. Note that the new norm forces the
autocorrelation of the prediction error {or nonzero shifts to small values (whitens the prediction error)
and this proporty may result in a better estimate of the model parameters (compared to qudratic
norm for a given model order) when the true model is not actually inside the model set.

As we have shown previously, for an ARX model structure, the matrix Enps is affine in the
parameters and we are interested in minimizing the maximum singular value of Enps. This problem
is alread; discussed in thie literature [7, 4] and a recent algorithm is proposed in {1]. However, by
exploiting the special structure of the matrices C; defined in (35), it may be possible to increase the
efficiency of the algorithm in [1]. Also in our application, the size of the matrices involved is quite large
and special attention should be paid to the memory management and algorithmic implementation;
otherwise huge amounts of memory will be required to perform the optimization even for modest
values of M and N.
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Figure 2: Magnitude Plots

5 Numerical Example

We solved a numerical example to illustrate the properties of the new norm. For performing the
minimization, we used the standard QPTIMIZE routine available in MATRIXx softwrae package {6}.
The true model was chosen to be the zero order hold equivalent of a second order lightly damped
mode sampled at 1 Hz. The frequency response of the true model is shown in Figure 2 as a solid line.
The measured output was assumed to be the sum of the output of the true model and a filtered white
guassian pseudo random sequence. The input is a white pseudo random guassian sequence. The signal
to noise ratio is chosen to be 5. The number of data points used is 512.

We assumed a second order ARX model for the system and estimated the parameters of the model
by minimizing V32(En) and Vi(En). Note that the true model is in output error [5] form. The
resulting estimated transfer functions are denoted by G32 and G! respectively, and the true transfer
function is denoted by Gg with the magnitude of the frequency responses shown in Figure 2. The
magnitude of the errors Go—G32% and Go—G? are shown in Figure 3. The spectrum and autocorrelation
of the prediction errors €32 and e! that are obtained from the optimal parameter estimates 632 and
6* respectively are shown in Figures 4 and 5. The spectrum is estimated using a Hamming window
with a length of 32 points.

For the optimal estimates, the values of the objective functions are as follows:

Vaz( En(8°?)) = 0.1926, Vi(En(6%%)) = 0.1473 (36)
Vi(En(6)) = 0.0956, Vay(En(6')) = 0.2781 (37)

Note that the values of Va(En(8?)) and Va3(En(8')) are in close agreement with the maximum of
the spectrum of the prediction errors that are shown in Figure 4. Moreover, the values of nonzero
shifts of the autocorrelation of e? are much smaller than those of e}. In other words, €32 is close to

being white but e} is clearly correlated. However, the variance of €32 is considerably larger than that
of el.

86




Magnitude of Error (db)

0 A 2 3 4 5
Frequency (Hz)

Figure 3: Magnitude of Frequency Response of error
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Figure 4: Estimated Spectrums of Prediction Errors
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Figure 5: Autocorrelations of Prediction Errors

6 Conclusion

Although we have presented some preliminary results on the properties of the L, identification prob-
lem in this paper, much further work is required to explore the properties of the new norm in details.
To perform this task, an efficient implementation of the required minimization algorithm is required
so realistic high order models can be estimated and their properties can be compared with those of
the least square minimization. As we previously noted, the convexity of the new norm when an ARX

model is used is an important property, and hence many techniques of convex optimization can be
used for the solution of this problem.
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Abstract A new approach is given for the design of adap-
tive robust control in the frequency domain. Starting with an
initial model and a robust stabilizing controller, the new (wind-
surfer) approach allows the bandwidth of the closed-loop system
to be increased progressively through an iterative control-relevant
system identification and control design procedure. Encouraging
results are obtained in the case studies that serve as a benchmark
test for the new idea.

1 Introduction

It has long been understood that a key problem in control systems
design is to handle the wnceriaintics associated with the plant [12].
Two main techniques for the analysis and design of systems with
significant uncertainties are adaptive control [8} and robust control
6. 15).

In the traditional approach to analysis and design of an adap-
tive control system [8], it is assumed that the unkrown plant can
be represented by a model in which everything is known except
for the values of a finite number of parameters. Once the param-
ateis are estimated (and even during the estimation process), the
principle of certainty equivalence is normally invoked to update
the controller. Normally the unstructured uncertainties of the
model are ignored in this approach. Therefore it is not surprising,
as pointed out in [18], that these adaptive controllers are often
not robust. Further, the extensions' of the traditional approach to
adaptive control which purportedly cope with unstructured (and
other) uncertainties involve conditions which are often hard to ap-
ply or to grasp intuitively, see for example [1, 3, 13]. A further
problem with the traditional approach is that extreme transient
excursions are possible even when global convergence and asymp-
totic performance are guaranteed [21].

To be more specific, we consider an adaptive control system as
shown in figure I, where G is the unknown transfer function of the
plant. The time axis is divided into intervals such that during the
i** interval, the controt input applied to the plant is obtained from
K;, where K; is the transfer function of the controller designed
using the madel G, obtained at the end of the (i — 1)** time
interval.

In an adaptive control problem, the uiterior objective for find-
ing Gi, an estimate of G updated from G-, is to redesign a better
controller Ky than K, such that certain control objectives are
improved. For example if T4 represents the desired complemen-
tary wensitivity function, then we may «e¢ to have

GK, GRi_\ .
nl+GK._T‘ —T‘L,' ve

B sl},—:c—;a:

Implicitly, this means we would like to minimize

Gl\';_ 74
t o+ G,

Yi.

™

89

.Since G, the teansfer function of the plant, is unknown, we could
only base our design of K; on Gi-, such that

Gi1y 4| .
— T , Vi
1+Giar oo )

Note that, as usual, we have invoked the principle of certainty
equivalence. However, it is important to realize that

GK;
B 1+GK; ’T‘L

is not necessarily small, even lhoﬁgh

ﬂ Gi-1K:
1+ Gi1K;

K; = argmin
Y

_ Tlﬂ
o0

is a minimum. This partly explains why traditional adaptive con-

trol systems, which invariably invoked th= principle of certainty

equivalence, have unsatisfactory robustness property.

In the robust conteol approach [6, 15}, a controller is designed
based on a nominal model of the plant with the associated para-
metric and unstructured model uncertainties explicitly taken into
account. Therefore stability robustness is guaranteed and perfor-
mance robustness is achieved sometimes. The weakness of this
approach is that it considers only the a priori information on the
model, and neglects the fact that characteristics of the plant could
be learnt while it is being controlled. Therefore, the robust con-
trol approach tends to result in a conservative design in terms
of performance. It is likely that a posteriori knowledge about the

plant could be used to reduce the conservatism in a robust contro}
design.

2 The Windsurfer Approach to Adap-
tive Control

By consideting how humans learn windsurfing, Anderson and Kosut
(2] have made the following observations:

1. The human fitst learns to control over a limited bandwidth,
and learning pushes out the bandwidth over which an accu-
rate model of the plant is known.

2. The human first implements a low gain controller, and learn-
ing allows the foop to be tightened.

Based on these observations an adaptive robust control design
philosophy, the windsurfer approach, is proposed in [2]. It recog-
nizes that, at the outset, the plant characteristics can differ greatly
from the estimated mode! at any one time, particularly during the
initial learning stage. In the new design approach, a low gain con-
troller will first be implemeanted: and the control bandwidth will
be small. Based on learning a frequency domarn description of the




plant in closed- loop, with the learning process progressively in-
creasing the bandwidth over which the plant is accurately known,
the controller gain can be increased appropriately over an increas-
ing frequency band. For details, refer to {2]. Importantly, in the
method suggested, the necessary closed-loop system identification
task is simplified into an open-loop system identification problem
through the use of coprime fractional representations as discussed
in {9, 10}.

It was shown recently in [19] that the best modcl for control
design cannot be derived from open-loop expetiments alone. The
controtler to be implemented should be taken into account by the
system identification experiments. However, this controller is not
yet available, as its determination rests on the results of the sys-
tem identification Lo be carried out. Hence, a gencral solution
to the combination of system identification and control design is
necessarily iterative. It was also shown in [22] that an iterative
approach for model refinement and control robustness enhance-
ment can be developed for a H; control problem. Although the
emphasis of {19] is on the problem of modeling foc control design,
its approach is very similar to that of [2]. In the next section, we
would like to illustrate the windsuefer approach by considering a
model matching problem in the context of adaptive control.

3 Adaptive Model Matching

Let G be the unknown transfer function of the plant, and let
T tepresent a desired complementary sensitivity function. We
wish to achieve, through iterative system identification and control
design, the minimization of the cost function
GK
H 1+GK ~ T‘L '
where K is the transfer function of & controller Lo be design.

We begin by designing a controller K o to stabilize a known
initial model Gg, which may be obtained from an open-loop sys-
tem identification exercise. If K, o also stabilizes the unknown
transfer function G, then we say that K o tobustly stabilizes Gy.
Notice that we use Kj; to denote the j** controller designed us-
ing the i** model which has a transfer function G;. In general, we
attach the subscript j,i to a transfer function to denote that it
is either spicified or derived on the basis of the i** model for the
plant at the j** itecation of control design. Since Gg may involve
significant uncertainties, the resulting controller Ky 0 may not be
able to achieve & small value for

GoKi 0
e
while robustly stabilizing Go. In general, we need to consider how
to handie the question of securing robust stabilization of G; by
K;.i. This is bound up with the question of selection of 7%. It is
in (act to be expected that a sequence of T* will be selected in
such a way that the end control objective can be approached in
stages. We shall therefore proceed as follows.

Associated with cach of the models G;, a sequence of con-
trollers K ; is to be designed such that

Gi

I+ ga‘l’ - T‘i"“m '

Kji=arg m’in" vj, @1
where the sequence of functions T¥j; is specified with T‘j“,;
normally of wider bandwidth than T%;;, and with T4, ; resulting
in a controller Iy ; that rabustly stabilizes G;. A stage will be
reached (say when j = N) where the bandwidth of the nominal
closed-loop transfer function,

Tai= — L (3.2)

cannat be increased further without causing the effects of model
uncertainties in G; to be too significant. This occurs when the
value of

Wins ~ Tovilloo
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is no longer stmall, wheee

Gy,
14 GRp,

T, =

“3)

is the actual closed-Joop transfer function of the system.

AL this stage it is necessary to improve the accuracy of the
tiodel in such a way that 15 relevant to the control objective.
This means that we should try to find an updated model G,
such that

GKRn, 0Ky,
L +GRNn, 140K,

Gigy = argm.'m (3.4)

©a

Equation 3.4 would be the formulation of a standaid rational
function approximation problem, provided that & were known. In
the simulation (section 6}, we shall take this approach by using a
known transfer function for G. This serves as a beachmark test of
the windsurfer approach as it corresponds Lo performing system
identification with an infinite number of noiseless measurements.
It is a topic of further research to deal with this problem in a
realistic system identification setting when only a finite number
of (possibly noisy) input-output measurements are available.

Once G4, is found, we can continue to increase the closed-loop
bandwidth by repeating the procedure described for G; previously.
However G4, should be used instead of G;, and we specily a new
sequence of functions T¥; ;41 with T¥; ;41 = T¥u ;. The itecative
process is continued until the end control objective is achieved or it
is prematurely terminated because of one or more of the following
constraints:

1. fundamental performance limitations due to right half plane
poles and zeros of the plant and/or models (7).

2. unstable model is obtained. (This is a consequence of ouc
simplified control design method. Appropriate extensions of
the control design method (15] allow us to deal with this
restriction.}

3. finite control energy.

4 Closed-loop System Identification

We first review a method for closed-loop system identification de-
veloped by Hansen {1C]. Subsequently, in theorem 4.2, we demon-
strate that with appropriate signal filtering, Hansen’s method pro-
vides a suitable framework to carry out the control-relevant system
identificstion formulated in section 3. For the sake of expository
simplicity, we shall consider only scalar plants. We begin with the
following theorem (20]:

Theorem 4.1 If K = § is a controller, where X and Y are
stable proper transfer functions, and if N and D are stable proper
transfer functions that satisfy the E:zout idenlity

NX + DY =1,

then the set of all plants stadilized by the controller K s precisely
the set of elements in

G= (-g—t-—g—;— : R 15 a stable proper transfer funclion).

Consider the feedback system shown in figure 4, whete y and
u are the measured output and the control input, respectively,
€ is an unpredictable white disturbance, and r; and r; are user
applied inputs. It is assumed that K;; is a known stabilizing
conttoller, G is unexactlv known and possibly unstable, and, as is
standard {14], H is impecfectly known, stable and inversely stable.
The system identification problem is to obtain improved estimates
of G and / from a finite interval of measured and known data
{v.u,ri,rz:0<t<T}

Following Hansen {10}, we introduce the stable proper transfer
functions X; i, Yj.. N, and D;, which satisfy




K, = ==,
T Y
N;
Gi= —,
D;

and
NX; .+ DYi=1

The interpretation is that G; is a known but imperfect model of
the plant which is also stabilized by K;;. Applying theorem 4.1
as shown in {10}, there exist stable proper transfer {unctions i, ;
and S, j, with S also inversely stable, such that

Ni+ R -5
G = el bl 4.1
Di— R X;.i @
H o= Siy 4.2)

D; —~ Rij X'
where R;; denoles the parametnzation of G using the i** model
and its associated j** controlier K.

As a result, systewn id ntification of G and H in closed-loop
is equivalent to system identification of t'.: stable proper trans-
fer functions R;; and S;;. Using equations 4.1 and 4.2, we can
represent the feedback system as shown in figure 4.

From figure 4, we can write

B = Rijo+Sije, (43)
whete
a= Xi'.'y “+ Y,'..'u, (4.4)
and
f = Diy— N;u. (4.5)

However, as
u= K;iri-y)+r2

and x
Kji= T,”*‘l
equation 4.4 can be re-written as
o= Xjir + Yjra. {4.6)

It is important to observe from equations 4.3, 4.5 and 4.6 that
a depends on the applied signals ry and r3 operated on by knowa
stable proper transfer functions X ; and Yj; respectively, and §
depends on measured signals y and u operated by known stable
proper transfer functions D; and N; respectively. Moreover, o
is indep-ndent of the transfer functions G and H and the distur-
bance ¢. Hence the system identification of G and # in closed-loop
has been recast into the system identification of R;; and S;j in
open-loop. We shall next state a result which is highly relevant
to the system identification step of the windsutfer approach to
adaptive control.

Theorem 4.2 Let the controller Kj; stabilize the plant transfer
function G and the model transfer funclion

N
G =B,

where N, and D; are slable proper transfer functions, and let

wheee X;; and Y;, are stable proper transfer funclions salisfying
the Bezout identity

N‘l\‘"l + DY, =1

Let G gy be anolher model of G, also stabilized by I; ; and there-
fore having a description
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Ny,
D, =X, 4.7)

4

(;.') =z

where r,; 15 @ strble proper trunsfer function. Also definc the
filtered output ervor

E= Y, ufi-rija),
where, with ry = 0,
a = a; oy,
1= D,y — Niu,
ry = reference signal
y = plant output,
u = ronirol inpul.

Thus § i3 an ervor arising in the (open-loop) identification of R; 4
through an estimate v, ;. Then the fillered oxtput ervor can be
ezxpressed as

_[_GKiji  _GinKji ) H
¢= (1+Gfx',-,.~ 14+ Gin Ky N L+ GK;i®

Li.s proof is not given due to space limitations.
Suj.pose that the valus of

GK;. _ GiKj
1+ GK;: 1+GiKji|.

(4.8)

has becom : large. As it was described in section 3, we want a new
tdentification of G via G4 for which

H GK,'_.' _ Gig1 K. “
1+GKj, l+G.'+|K,-_" «

“.9)

is small. We are going to use the r;; parametrization of G;41. By

substituting equations 4.1 and 4.7 into expression 4.9, and noting
that

Kiji= %’:‘- ,
we can, after simplification, conclude that
1 fIC\:’I'(;j,i 1 SE::’K",. . = Y5 Xl R = rislles
{4.10)
should be small.
Remarks
e Note that GK;.
Tii= m‘:
is the actual clesed-loop transfer function «f the system, and
- . Gik;,

T 14 GiKji

is the nominal ciosed-loop transfer functicn of the system.
Therefore, using similar substitutions that resulted in equa-
tion 4.10, w2 can obtain

Ty =T = Vi X a(Rey ~ K ). (4.11)
I owever, since 3
R,‘..' =0, Vj, vi,
we therefore have
T~ T =Y, X, R, . {112}

By comparing the argument of the H,, norm g.ven in ex-
pression 4.8 with the left hand side of equatior (.12, « : see
immediataiy tha. when the value of




‘ CK;, G.K;,
1+ Gl 1+ GiK

has became large; that is, when the closed-loop property of
the actual system (T} ,) is significantly different from the
closed-loop property of the nominal system (7 ), the value
of

Wi Xl jlloo
will be large.

e From the signals defined in theorem 4.2, we observed that
R, ;. the transfer function to be identified, is excited by the
signal o, where

o = X,‘_.'rl N
and K
P S
Xis 1+ GiK;e'
Since the nominal closed-loop transfer function of the system
is
- GiK;q
oo _Gefyad
Ba=1 +GiKji'
we can write

=L

Xii= o

Therefore, X;; will have large magnitude when we try to

push the nominal closed-loop bandwidth beyond the nom-

inal open-loop bandwidth. Since & model usually has its

uncertainties become significant for frequencies beyond its

bandwidth, from figure 4, we see that if the spectrum of ry

is white, we automatically get the right weighting for the
input to R;; for the system identification scheme.

o It is shown in theorem 4.2 that the effect of ¢ on £ is g given
by ‘—*‘—fi"ﬁ-’-: Note that this is the effect of ¢ on y attenuated
by the sensitivity function of the actual closed-loop system.

5 Approximate Identification of the R; ;
Transfer Function for IMC Controller
Design

In section 4, we have shown that the closed-loop system identifi-
cation of the plant transfer function G can be reformulated into
an open-loop system identification of the stable proper transfer
function R;; that parametrized the transfer function G via the
equation

C= Ni+ R ;Y

D; - Ri; X;;’

In this and the following sections, we shall, for simplicity, study
the case where the plant is stable and has no zeros on the imagi-
nary axis of the s-plane, and where the IMC method [15] is used to
design the controller K; ;. We shall also assume that all estimates
G of the plant ace stable.

If the model e ﬁ‘-
[ Di
is also stable, we can let N; = G, and D; = 1 so that
Il‘. .

C=Gi+ (5.1)

J
1- RijQia’
where Q; . is a siable proper transfer function that parametrized
the controller Xex
ko= T,
Yii
and

e K 2
Q"' - 14-6'."(,"." (5 )
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Note that
P PIREE % SN

and
Yyo= 1~ O,»,(},
Stnce the parametnization of G by It depends intimately on Q.
we shall briefly explain how @, . 1s obtained in the design of the
conteolter I(, (. We will use the notrtions ny aad dyy to deaote
the numerator polynomial and the denominator polynomial of a
rational transfer function If
Given a stable model,

where dg, has no zeros in the closed right hall s-plane, il ng, has
no zeros on the imaginary axis of the s-plane, we can write

o EG- ne(’i -~ ‘)
Gb = dG. .

where all z; have positive real parts, and R, has no teros in the
closed right hslf e-plane. By writing G, as

G; = [Gi]mlGile,
where

e »
[Gilm = _':_G_._T_I%_i_ﬂ: ;" is the complex-conjugate of z;,

and
' (Gl = ni(t‘ - 8)
Nz +9) )

we have factored G; as a product of its minimum-phase factor
{Gilm, and the associated all-pass factor [Gi].. We can design
controller, using the internal model control (IMC) approach {18},
by setting

Qji =Gl Fis, (53)

where Fj; is » low pass filter of the form

X e
AU .. 2
FJJ (‘+‘\i.i) )

with n chosen large enough so that Q; ; is proper, and A; ; selected
(possibly on-line) smali enough so that Kj; robustly stabilizes G;.

In the ideal situation where G; = G is stable and minimum-
phase, it [ollows that the nominal and the sctual closed-loop trans-
fer functions of the aystem are equal and are given by the transfer
function Fy ;. Therefore A; ; is both the nominal and actual closed-
loop system bandwidth with a —~3ndB sttenuation. In general,
Gi # G and A serves only a3 an approximate bandwidth of the
actual closed-loop system.

With the controller designed using the above procedure, we
shall now show that the transfer {unction to be identified, Rij.
is the product of a known stable proper transfer function and an
unknown stable strictly-proper transfer function. An analysis of
the form of the unknown factor in Ri; indicates how it can be
sensibly approximated by a low-order transfer function. We shall
first rewrite equation 5.1 as

_ G -G,
T 14+ QG ~ Gy

Then we can obtain, after substituting equations 5.2 and 5.3 into
equation 5.4, and petforming some algebraic manipulations,

Riy (5.4)

dg ng ~ dgng, } (5.5)

Ros = ((Gulmtr, ) { Fro50 2 TE0E

Note that equation 5.5 can also be written as

Ry = Ry Ry, (5.6)




wlhere -
i, = [G)mdr,, (3.7)
is 3 knows stable proper traasfer function, and

dg ng ~dgng,

i, = (5.8)

dg, de 4 nK'_‘nG'
is an unknown stable strictly proper transfer function that depends
on the uaknown transfer function ¢ Thercfore the problem of
wdentifying 1 , has become onc of identifying its unknown factor
[AC.J. We shall summarize this tmportant result in the following
theorem.

Theorem 5.1 Constder ¢ plant which kas an unknown stable
proper transfer function G, and a mode! with a known stable
proper transfer function G;. If G and G; have no zeros «long
the imaginary aris of the s-plane, and

Gi = [Gi)m[Cila.

where {Gilm ts the minimum-phase faclor of Gi, end [Gi), is the
all-pass factor of G;, then with
Qi = [Gilm ™ Fjs
and N "
= (2dé-
Fia ('+»\'.-') '
where n i3 chosen such that Q; ¢ is ¢ steble proper transfer func-
tion, the controller
Qj.i
/L
Kis= 1= Q;.iGi
will robustly stabdilize G; for all sufficiently amall values of A;¢ 2 0.
Furthermore, the unknoun stable strictly proper transfer function
to be identified,
Ri; = __6-G _
T+ Q,'_;(G- G.')'
can d¢ factorized as - .
Rij = RijRi ,
where ﬁ',-_,- is an unknown stable proper transfer function to d¢
identified, and }~Z,~J~ 15 a known stable proper transfer funclion
given by _
Rij = {Gilmdr,..

where dr,, is the denominalor polynomial of the filter Fj ;.

Remarks

e Note that the factorization of R;; given in theotem 5.1 is
naturally induced by the IMC [15] controller design proce-
dure that we have adopted.

 The poles of R; j are the poles of Tj ;, the actual closed-loop
transfer function of the system.

o 1t is important to note that Ri; = 0 if and only if G = Gi.

o The order of k. J is constraint by the degree of the polyno-
mial dg, dg, which is an unknown.

As we do not know the order of R.-J a peiori, and since only
step response information is available, it is reasonable to employ
a low-order transfer function for the approximate identification
of R;j. Since we arc going to identily Ry (actually R;;) and
update G; to Giyy when the step response of the actual closed-
loop system exhibits unacceptable oscillations and/or overshoots,
we expect R J o have complex-conjugate poles. Therefore, the
lowest possible otder that we can assume for the transfer fuaction
which serve as an approximation of R, j is two.

It was shown in equation 4.10 that the system identification
problem is to find

., ,n;‘,n:mL,\I.)',_.(I(,J 03, (5 9)

I we define

roy o= G, (5.10}
where F.J 1s an unhnown second-order stable strictly proper trans-
fer function then by substituting equations 5 3, 5.6, and 5 10 into
equation 5 9, we can show that the system deatification problem
becomes one of finduy

., argnin TR VNS N/ ST (511

Remark

Since Y, , 1s the nomunal sensilivity function of the closed-
toop system, we immediately see that the frequency shaping
in the identification criterion given by equation $.11 will
force the updated model Lo have small modelling erroc in the
range of frequencies where the nominal sensitivity function
cannol be made small by the controller K ;.

When updating the model using the equation

Ca +1 = GI + "'—L'
P—riiQji
the order of the model may increase. To prevent the mode!
order from increasing indefinitely, we use a frequency weighted

balanced truncation scheme to reduce the order of Gyys.
Specifically, we find

é.’n:ugminﬂ Gior Ky Ky B .
. oG

1+ G.'+1K” 1 + 9K

where Gisy is the reduced order model. if the model order
is restrict -4 to m, the controller will be at most of order 2m
(see controller design equations given in theorem 5.1). In
this way the controller complexity will be limited.

6 Simulation Results
We shall present some simulation results of applying the wind-
surfer approach to the control of a plant with the transfer function

9
(s+1)(s? 4+ 0.065+9)

G(s) =

We first summarize the procedure in the following algorithm:
Step 1:

Set G, = Gy, where G, is the teansfer function of an
initial model of the plant.

Step 2:
Factorize G; as

G. = [Gr)m(Gilu

where {G\}m is the minimum-phase factor of G;, and
[Gile is the associated all-pass factor of G,.

Step 3:
For j = 1, find
. Qj.i
K,i= —f £
T4 QiG
with

Q. =[Clm™" F.

where the positive (nteger n and the parameter Xj; in
the transfer function

F,.o= (_AI.- "
T \s4a,,




are chosen such that Q,, is a stable proper transicr
function, and I(; i robustly stabilizes G, tn the sense
that the step tesponse of the actual closcd-loop sys-
tem has, at most, little oscillations and for overshoots.
Stop here if such a cobust stabilizing controller cannot
be found. Also stop here if the robust stabilizing con-
troller results in a closed-loop system which meets the
specified bandwidth. Otherwise, proceed to the next
step.

Step 4:

Let j=j+1andset A;; =Xy, +cforsmalle >0,
and redesign the controller K; using the cquations
given in Step3. Stop here il the design produces a ro-
bust stabilizing controller with the closed-loop system
satisflying the specified bandwidth. Otherwise, repeat
this step if K ; robustly stabilizes G;; else proceed to
the next step.

Step 5:
Pecfocm rational function spproximation to obtain

Fig = &g mjnll'\m"yi.‘(ﬁu ~ loo-

Then update the model using the following ect of equa-

tions: -
Rij = (GilmdF;.,.
riy = Rij7ij,
o Gipr =Gy 4 4
i$1 = ¢ 1— 'iJa,',l' .
Step 6:

If G4 is stable, find the reduced order model

o .} GinkK;i nK;. I
Gin _u‘m':n!l+ci+)Ki,i 149K au‘

Otherwise, stop here.
Step T:
Set G; = &in and return to Step 2.

Remarks

« In the algorithm, rational function approximation has to be
carried out when [T, ~ T il is no longer small. Broadly
speaking, this will correspond to a significant difference be-
tween the designed nominal performance (depending on G;
and Kn;) and the actual performance (depending on G and
K i) In particular, the observed step response may exbibit
much more oscillations and for overshoots than the designed
values. This is not of course the same thing as guaranteeing
that the H . error above has became large, but neither is it

unrelated.

o To be more precise, we define the peak gain of a system,
whose transfer function is T, by

_ ITelly,
I, = |-su‘:f¢o "“’“.,, ’

This is also equal Lo the (ofal varialion of the system’s unit
step response {4] defined as the sum of all consecutive peak-
to-valley diffecences in Lhe unit step response. It can be
shown (5] that, if T is a stable strictly proper transfer func-
tion,
Tl < UTH, € 20T, .

where n i3 the order of the transfer function T. Now we
consider the peak error
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Since
{700 = Tl U0l ~ Frn
therefore, o the obseeved step response of Tn  exlubits murh

more osaillations and/ar overshoots than the desigied step
response of Ty, , we wauld expect

T, > 7w,

and hence,

ITw, =T, e ¢>0
Since the peak gain also provides a loosc fower Lound for
the o gain, it is hikely that

{7ws ~ Tl

becomes large when the observed actual step rasponse ex-
hibite muck more oscillations and/or overshoots than the

desited one.

« This explains why, in the simulation, the models are updated
whenever the actual step response exhibits unacceptadle os-
cillations and/or overshoots.

The simulation results are presented in figure § and figuce §.
These figures correspoad respectively to the following case studies:

e Case 1: the initial model is Go(s) = ;{*—}3,

e Case 2: the initial model is Go(s) = -28;,

We present unit step responses at  rious steps ia the system
identification/coutrol design iteration, and frequency responses
achieved just before the iteration process is stopped.

In the first case study, see figure 5, the bandwidth of the closed-
joop system cannot be increased beyond 10radfsec because we
have stopped the iterative system identification and control design
process when an unstable model is obtained. Note that only two
model updates, G, and Gy, are required in the process, and the
results are sufficiently good for most practical purposes.

The results for the second case study are given in figure &
These results show that the closed-i2op bandwidth can easily be
pushed to 10 rad/sec with vety good step responses. Note thatin
this case, the mode! has to be updated only once.

Remark

o We must emphasize that in these simulations, instead of
performing a systemn identification using input-output mea-
surements, we actually petform the model approximation

fig = srgminild; " iRy = $Mes,

where iig_,- is obtained from the known G. The reasons for
doing this are:

L. Our results, slthough preliminaty, serve as a bench-
mark in the sense that using the transfer function G
corresponds to performing system identification with
an infinite number of noiseless measurements.

2. We like to know how serious the problems may be due
to employing a low-order approximation for ¥, ;. This
is important for later system identification studies.

3. We are, at this stage, more concerned with the concept
of iterative system identification and control design as
applied to adaptive robust control, rather than the de-
tails.

. Efficient algocithms for perfocming Ho, system identi-
fication are still lacking, and the corresponding theory
is still not well understood [11, 16, 17).

-




7 Discussions and Conclusions

We have revicwed (n section | the strength and weakness of both
the traditional adaptive control and the robust control design
methods. These methods should be able to complement each other
and there should Le natural ways in which they could be blended
harmoniously. We proposed that one of the possible ways is by
the windsurfer approach, which was first mentioned in {2). We
have shown, by simulation, that by starting with a (crude) initial
model of the plant and a (small bandwidth) robustly stabilizing
controller, the bandwidth of the closed-loop system can be in-
creased progressively through an iterative control-relevant system
identification and control design procedure. We shall highlight
the following points which we believe are reasons for the success
of the approach:

o The use of control-relevant frequency weighting in the sys-
tem identification criterion.

e Updating of the mode! when its effects is no longer small in
the closed-loop response. This will ensure that model uncer-
tainties are emphasized in the cotrect range of frequencies.

e The controller designed by using the IMC method always
has integral action. Therelore it is insensitive Lo model un-
certainties at low frequencies, provided the gain of the model
at low frequencies is of the right sign.

The controller designed by using the IMC method induces &
natural factorization in the parametrization of the unknown
transfer {unction of the plant. This enable the system iden-
tification problem to be solved eflectively.

In conclusion, we would like to emphasize that only the case
of stable plant and model is considered in this preliminary study.
We will like to address the following problems in the near future:

o The extension of the method to deal with unstable plant
and model.

o Use of orthogonalized exponentials in the system identifica-
tion procedure such that it becomes a convex optimization
problem.

o To prove that the algorithm actually converges in some sense.

¢ To study other control design methods in the context of the
windsurfer approach.
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Figure 1: Adaptive control system

Figure 1: Closed-loop system

Figure 3: Closed-toop system identification

[

Figure 4: Excitation of Ry
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Adaptive Robust Control: On-Line Learning

BriaN D. Q. ANDERSON °

Abstract A method of on-line adaptation and learning is pro-
posed which makes use of a probing signal whose frequency content
is concentrated at the bandwidth of the current controller. As the
plant is learned the procedure naturally increases the lesrning band-
width.

1 Introduction

It is very easy to consiruct an adaptive system: just connect a
controller design rule and a model parameter estimator together.
This kind of adaptive control system operates along roughly the
following lines. A model for the unknown plant is assumed in which
everything is known but the values of a finite numnber of parameters.
These parameters have the property that when they are known, the
controller can be defined. It too has a finite number of adjustable
parameters, the values of which depend on the plant parameters.
By observing the plant input and output, the plant parameters
are leamed and/or tracked, and the controller parameters are then
set according to some design rule. Sometimes it is the controller
parameters which are learned directly. Certain choices of controller
parametrization lends itself to this approach, others do not.

What is absent in this approach is the recognition that the es-
timated plant parametric model during the leaming phase can be
a poor representation of the true plant. This mismatch between
the plant and the estimated model can cause poor performance via
such phenomena as parameter drifting and bursting. All of this has
been reported in the literature and under certain conditions has
been analyzed and explained, {1}, (2]

In this paper we invoke a different design philosophy than that
expressed by the previous reasoning. The new reasoning would have
to recognize at the cutset that the true plant can differ greatly from

the estimated model at any one time, particularly during the initial
leamning stage.

Nature provides examples of ¢his kind of adaptive control, and
it seems that many such examples do not exhibit the traditional
operating strategy. In particular, consider how humans learn wind-
surfing, where the human is the adaptive controller. Several obser-
vations can be made: (1) The problem has multiple inputs. (2) The
human first learns to control over a limited bandwidth, and learning
pushes out the bandwidth, (3) The human first implements a low
gain controller; and learning causes the loops to be tightened (this is
linked with 2). These observations suggest that one could contem-
plate an adaptive controller based on learning a frequency domain
description of the plant, with the learning process pushing out the
bandwidth over which the plant was accurately known. For such a
concept to be valid and consistent with point 3 above, it would be
neccssary to demonstrate, at least for a broad class of plants, that a
low gain controller can be contemplated for plants with significant
uncertainty at high frequencies, and that reduction in the struc-
tured uncertainty progressively aliow increase of the controller gain

*Systems Engineering Dept., Australian National University,
Canberra, Australia

VIntegrated Systems Inc., 3260 Jay St., Santa Clara, CA 95054.
Research support from AFOSR, Dircctorate of Mathematical and
Information Sciences, under Contract F49620-83-C-0119.

RoBERT L. Kosut !

and control over an increasing frequency band; this is cssentially a
linear systemnas, as opposed to adaptive systems, exercise.

It would also be desirable to show that when the bebaviour of
the plant over a certain bandwidth had been learned and certain
controller gains implemented, it would be natural to apply & probing
signal at the upper limit of this bandwidth (perhape in handling
transients) so that the bandwidth of knowledge of the plant was
expanded.

2 Closed-Loop Identification

For the sake of expository simplicity, we shall restrict sttention to
scalar plants. The following result can be found in one form or
another in {9] and the references therein.

Theorem 1 Suppose that X,Y,N,D erc stable transfer functions
satisfying

XN+YD=1 (1)
Then:

(i) All controllers C whick stabilize the plant P = N/D arc in
the set of transfer functions ,

-;’-f—f—-g% . Q nta&lc} @)

(i) All plants P atabilized by the controller C = X[Y are in the
set of transfer functions ,

N+ RY
e % {
D-RX R stab c} (3)

Since all rational transfer functions can be expressed as a ratio of
stable transfer functions , it follows that part (i) gives a parametriza-
tion of all stabilizing rational controliers of rational plants.

Statement (ii}, which follows directly from (i) by interchanging
the plant and controller, was developed in {3, 4] for use in closed-
loop identification for the problem of experiment design. Similar
results are also in [8]. In this paper we also utilize this result, but
for a slightly different purpose.

Caonsider the feedback system,

v =
u

Gu+ He <)
Ko(ri —v) +r2 {s)

i

where (y,u) are the measured output and control input, respec-
tively, e is an unpredictable disturbance, and (ry,r3) are user ap-
plied inputs. It is assumed that Kj is a stabilizing feedback com-
pensator. This implies some krowlwdge of G, but otherwise G and
H are assumed unknown. The plant is the pair (G, H) where G is
possibly unstable and, as is standard, # and H~? are stable [6].
The identification problem is to obtain estimates of (G, H) from a
finite set of measured and known data {y,u,r1,r2 : 0<t < T).
Following identification, the controller is to be re-designed to im-
prove performance of the closed-loop system.
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Stable Plant Lei us consider the special case when the plant
G is stable. Suppose also that Gy is stable and that Ko stabilizes
Go. Then, by Theorem 1, it can be shown that Kg stabilizes G iff

there exists a stable R and stable mini-phase S, such that

R S
G=¢C ., H= G
°+1-RG, 1= RO, ©
where
Ko
= ——— 7
Qo 14 GoKo ™
Again, an interpretation is that Ko stabilizes all plants in the set
R
—=—— : R stabl } 8
{G°+1—RQ0 stable (8)
As result, identification of (G, H) in closed-loop is equivalent to
identification of the stable open-loop (R, S)-system,
B8 = Ra+ Se )
where 8,a are given by
B8 = y—-Gou (10)
a = Qo+ (1—QoGo)ra (11)

t-~vve that (a,3) depend on measured and applied signals

(v, u,71,72) operated on by known stable systems (Go, Qo).

Example To further motivate identifying the (R,S)-system,

consider the following example:

G = 9
T (s 1)(s? + 065+ 9)
1
Go = +41
. As+1)
Qo = Gt2p2

Figure 1 shows the magnitude of . and G — Gg vs. frequency.
These are very close showing that identification of R is close to

identification of the model error G — Go.

Y

Figure 1: Magnitude plots of R and G—Gy vs. frequency.

Thus, we are led to the following iterative identification algorithm
for stable plants in closed-loop. A similar formulation is available

for the general case where the plant is possibly unstable.

. ) . Koo
Initial : = ' = = 1+ Goo Koo
mtialize: G =Goo, Q= Qon 1 4 Goo Koo
Update =G =Q Ko= —2
) Go =G, Q=¢ %= 120060

Identification input: u = Ko(r; - y) 4 72

R
1 - RQo
ControllerDesign Q = argmin |Hgeqireq — GQl
Y]

G - Update ¢ =Gy +

Repeat

Although we can not offer any proof at this time, we believe that
this iterative procedure provides a natural approach to learning by
gradually increasing the bandwidth of the controller. The essential
features {all out of the fractional representation theory, in particular
via the transformation from the (G, H) system in closed-loop to the
(R, S)-system in open-loop, and subsequent identification of the
(R,S) system to obtain estimates of (G, H).
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